
Placing Relay Nodes for Intra-Domain Path Diversity

Meeyoung Cha†, Sue Moon†, Chong-Dae Park‡,
and Aman Shaikh∗

CS/TR-2005-214

May 17, 2005 (revised July 6, 2005)

K A I S T
Department of Computer Science

† Meeyoung Cha and Sue Moon are supported by Korea Science and Engineering Foundation
(KOSEF) through Advanced Information Technology Research Center (AITrc).‡ Chong-Dae
Park is supported by Brain Korea 21 (BK21) project through the school of information
technology in KAIST.∗ Aman Shaikh is with AT&T Labs – Research, at 180 Park Avenue,
Florham Park, NJ 07932, USA.

1

Placing Relay Nodes for Intra-Domain Path Diversity
Meeyoung Cha†, Sue Moon†, Chong-Dae Park‡, and Aman Shaikh∗

Abstract

To increase reliability and robustness of mission-critical services in the face of routing changes, it
is often desirable and beneficial to take advantage of path diversity provided by the network topology.
One way of achieving this inside a single Autonomous System (AS) is to use two paths between
every Origin-Destination (OD) pair. One path is the default path defined by the intra-domain routing
protocol; the other path is defined as an overlay path that passes through a strategically placed relay
node. The key question then is how to place such relay nodes inside an AS, which is the focus of
this paper.

We propose two heuristic algorithms to find the positions of relay nodes such that every OD
pair has an overlay path, going through a relay node, that is disjoint from the default path. When it
is not possible to find completely disjoint overlay paths, we allow overlay paths to have overlapped
links with default paths. Since overlapped links diminish the robustness of overlay paths against a
single point of failure, we introduce the notion of penalty for partially disjoint paths.

We apply our algorithms on three different types of topology data – real, inferred, and synthetic
– and show that our algorithms find relay nodes of close-to-minimum penalty. Using daily topology
snapshots and network event log, we also show that our choices for relay nodes are relatively
insensitive to network dynamics; which is very important for a placement algorithm to be viable
and practical.

1. Introduction and Motivation
Link and router failures are frequent in the Internet [20], [24]. Routing protocols are used to detect such

failures and route around them. However, the convergence time for routing protocols to route around failures
is often in the order of seconds or minutes [11], [15]. The downside of such long convergence time is that
certain end-to-end connections may experience seconds or minutes of outage [7]. To increase reliability and
robustness of mission-critical services in the face of temporary end-to-end path outages, it is often desirable
and beneficial to take advantage ofpath diversityprovided by the network topology.

One way of exploiting path diversity is to use a node inside the network to relay packets over an alternate
path that is different from the default routing path; we term this alternate path as anoverlay path. Previous work
on overlay routing has focused on selecting good relay nodes based on measured metrics or QoS (Quality of
Service) constraints, assuming relay nodes are already deployed (e.g.RON [5], Detour [27], or OverQoS [33]).
However, none of these works tackle the problem ofplacing the relay nodes well, which is the focus of this
paper.

To benefit from an overlay network of relay nodes, we envision applications using both the default and
overlay paths all the time thereby doubling the consumed network bandwidth. We believe that this redundant
bandwidth usage is justified when users of these applications are willing to pay or the total bandwidth consumed
is not significant, as in the case of VoIP applications.

Routing in the Internet forms a two-level hierarchy: inter-domain and intra-domain. BGP (Border Gateway
Protocol) [31] is thede factostandard inter-domain routing protocol. BGP route selection process is governed
by policies set forth by network administrators of individual domains or ASes (Autonomous Systems). On the

† Meeyoung Cha and Sue Moon are supported by Korea Science and Engineering Foundation (KOSEF)
through Advanced Information Technology Research Center (AITrc).‡ Chong-Dae Park is supported by Brain
Korea 21 (BK21) project through the school of information technology in KAIST.∗ Aman Shaikh is with
AT&T Labs – Research, at 180 Park Avenue, Florham Park, NJ 07932, USA.

2

other hand, several routing protocols are used for intra-domain routing; OSPF [23], IS-IS [8], and EIGRP [4]
being the popular ones. These protocols assign weights to links and employ shortest path routing in terms
of the link weights. The complete end-to-end path is a concatenation of several shortest paths within ASes
and inter-AS links chosen by individual ASes’ BGP policies, and is not determined by a single AS or policy.
Thus path diversity for end-to-end connections that span multiple ASes should be addressed in both intra- and
inter-domains. For this work, we focus on the relay placement problem within a single domain or an AS by
exploiting the path diversity available within such networks, and leave the problem of relay node placement
in the inter-domain context as future work. To the best of our knowledge, this is the first paper to address the
relay placement problem in the intra-domain context.

Within an AS, the overlay path consists of two shortest paths: one from the source to the relay node and
the other from the relay node to the destination. We assume that every node is a relay candidate, where relay
nodes are simply routers with a relaying capability. Our aim is to find positions of relay nodes such that every
OD (Origin-Destination) pair inside a domain has an overlay path that is completely disjoint from the default
path. Unfortunately in reality, it is often not possible to find completely disjoint paths for all OD pairs. As a
result, we allow overlap between the default and overlay paths while keeping the overlap as low as possible. In
this work, we report that a large portion of OD pairs fail to have completely disjoint paths due to topological
structures or link weights. For some realistic topologies, failures are over 75%. However, it is still beneficial
to have “partially” disjoint paths with minimum overlap. To quantify the extent of the overlap and resulting
quality degradation of overlay paths, we introduce the notion of penalty, and develop heuristic algorithms to
find relay nodes that incur close to minimum penalty.

We evaluate our algorithms on three different types of topology data – real, inferred, and synthetic. We show
that with a small number of relay nodes (typically fewer than 10% of the total number of nodes), network
resilience increases significantly against single link failures. We also use daily topology snapshots and network
event log from a tier-1 ISP to evaluate the efficacy of the algorithms against network dynamics. Specifically,
we show that the relays selected by our algorithms not only provide complete protection against 75.3% of
failure events and over 99% protection against 92.8% of failure events, but they also remain effective over
several months under dynamic network conditions.

The rest of the paper is organized as follows. We describe related work in Section 2. In Section 3,
we formulate the relay node placement problem and present a definition of penalty with some practical
considerations. We also propose our heuristic placement algorithms in this section. The evaluation of placement
algorithms follows in Section 4. In Section 5, using daily snapshots and event log, we show how our relay
nodes perform in the face of network dynamics. We discuss issues for further work in Section 6, and conclude
in Section 7.

2. Related Works
Exploiting path diversity for fault tolerance and load balancing was first introduced by Maxemchuck as

dispersity routing[21]. Since then, quite a few papers focusing on the selection of good overlay paths based
on measured metrics or QoS constraints have appeared in the literature [5], [27], [33]. Recent works have
proposed ways of using overlay networks in the security context. Leeet al. have proposed a distributed way
of constructing an overlay network against link attacks [16]. Liet al. have proposed using overlay paths for
resilient delivery of security updates [17]. All these proposals, however, assume that the relay (or overlay)
nodes have already been deployed.

In terms of real-life deployment, many overlay networks have been constructed, often in an ad-hoc fashion.
MBone, the overlay network for multicast communication, comprises of multicast-capable border routers at
ASes and a set of intermediary nodes [9]. PlanetLab is a network of over 500 Linux PCs all around the world
that serves a large number of research projects involved in testing, deploying, and debugging new services [3],
[25]. PlanetLab nodes are hosted by volunteers; and no topological constraint has been imposed on how they
are placed. Resilient Overlay Network (RON) is an application-layer overlay on top of the existing Internet
routing substrate [5]. RON has about 50 machines that are located world-wide, but the majority (80%) are in
the United States.

Server placement problems hold some similarities with our work in that they also focus on finding an
optimal solution for resource locations [13], [26]. Often these problems are formulated as ak-median or

3

k-center problem [10]. Ink-median problem, the objective is to findk medians among all possible positions
to minimize the sum of distances from each vertex to its nearest median. Ink-center problem, the objective
is to minimize the maximum of distances to its nearest center. The objective of our problem is to minimize
the sum of overlaps between the default and overlay paths. The formulation of our problem is unique in that:
(1) our work focuses on providing disjoint paths and assign a relay node to each OD pair (whilek-median
and k-center assign a median or a center to each node); (2) the objective term to minimize is the overlap
between two paths (while in other problems, it is distance or delay); and (3) our problem lies in a non-metric
space. A cost function in a metric space must to be positive and symmetric, and to satisfy the triangular
inequality. However, our problem is in non-metric space. A distance function in metric space needs to be
positive, symmetric, and satisfy the triangular inequality. Figure 1 illustrates an example of non-metric space.
Let OD pairs in the figure be(A,B) and (C, D), and the relays beP and Q. Then, we see that triangular
inequality does not hold: the cost between(A,B) andP is greater than the sum of other costs.

A C

QP

B D

KAB(P) = 2

KAB(Q) = 0

KCD(Q) = 0

KCD(P) = 0

KAB(P) > KAB(Q) + KCD(P) + KCD(Q)

Figure 1. Relay node placement problem is in non-metric space (triangular inequality does not hold).

3. Relay Node Placement Problem
We model a network as a graphG(V, E), whereV is a set of nodes andE is a set of directed links between

pairs of nodes. A path is a finite non-null sequence of nodes and links between a pair of nodes. We term
the start node of a path as an origin, the end node as a destination, and the node pair as an OD pair. Every
link in the network is assigned a weight, and the cost of a path is measured as the sum of the weights of all
links along the path. As we limit our study to intra-domain routing, we assume that Shortest Path First (SPF)
routing based on link weights is used. If two paths do not have any common link between them, we call them
disjoint.

Figure 2. Traffic for an OD pair is routed along two paths: default path (determined by the intra-domain routing

protocol running within the AS) and overlay path (that passes through a strategically placed relay node).

Figure 2 depicts the idea of using disjoint overlay paths. If packets from the origin are duplicated and
sent along disjoint overlay paths, any disruption on either path causes no impact on the other path. However,
if multiple links fail simultaneously, both paths may be affected. In real networks, the chance of network
components located physically apart to fail at the exactly same moment is extremely slim. As the goal of this
work is to improve network resilience in the face of transient routing instability (that is, during the period of
routing convergence), we only consider single link or router failure events throughout this paper.

We now define the relay node placement problem as follows. Given a networkG and the number of relay
nodesk (constrained by available network resources), we want to findk positions of relays in the network such

4

that every OD pair finds an overlay path that is maximally disjoint from the default path. We use the concept
of penalty to quantify the overlap in paths. Our approach is for static analysis of network path diversity based
on the topology of a network, and we simply assume that equal amount of traffic flows between origin and
destination of every OD pair. However, real traffic matrix of a network is highly dynamic, and we discuss
how we can relax the assumption of homogeneous traffic matrix in Section 6.

Before we introduce our method to find relay nodes for disjoint overlay paths, we introduce how path
diversity is characterized in typical ISP networks. Then, we illustrate the key concept of our idea along with
two relay placement algorithms.

3.1. Path Diversity in Intra-Domain Routing and Its Impact on Relay Selection

Studies show that path diversity is available in IP layer topologies of typical ISP networks [12], [34]. Figure 3
shows an example of a large AS, consisting of a collection of physical locations called Point-of-Presences, or
PoPs. Within a PoP, an access router (denoted as AR) is connected to two or more backbone routers (denoted
as BR) with equal link weights for fault tolerance and load balancing [12]. Typically, parallel links between a
pair of two PoPs are assigned the same weight. As a result of such link weight assignment, multiple shortest
paths exist between the access routers in two PoPs, and they are calledEqual Cost Multi-Paths (ECMP).

Figure 3. Path diversity is available in typical ISP networks. It is often not possible to find completely disjoint overlay

paths for all node pairs.

When there exist ECMP between an OD pair, traffic is split equally among the multiple shortest paths, but
each individual flow (a group of packets with the same 5-tuple: source IP address, source port, destination IP
addresses, destination port, and protocol) is routed along only one path1.

ECMP play a positive role against link failures. Sridharanet al. reports that ECMP are helpful in avoiding
transient loops against link failures [30]. However, end-to-end connections are still susceptible to outages from
link failures, and disjoint overlay paths should provide increased level of protection against detrimental impact
of routing changes.

Since a node has finite degree, ECMP may exhaust all links out of a source for an OD pair and leave no
link for a disjoint overlay path. In this work, we report that a significant portion of OD pairs fail to have
completely disjoint paths due to topological structures or link weights; for some realistic topologies, as many
as 75% of OD pairs failed to have completely disjoint paths. In this case, we are forced to have overlapped
links between the default and overlay paths. Overlapped links will diminish robustness since a network is less
resilient to link or router failures. Toward that end, we introduce a notion of penalty to quantify the quality
degradation of overlay paths when they overlap with the default paths.

3.2. Measure of Penalty

First, we consider a way to quantify the impact of a particular link failure on a path. We use notationo → d
to denote a collection of shortest paths from nodeo to d. When there is only one path betweeno and d,
we treato → d as a single path. When there are multiple shortest paths betweeno andd, we assume traffic
is evenly split among those paths and treato → d as a collection of paths. We define an indicator variable,

1Often, hash functions are used to equally split traffic amongst ECMP and forward packets of a flow along the same path.

5

Io,d,l, as the probability that a packet routed fromo to d encounters the failed link,l. That is,Io,d,l is the
conditional probability that patho → d fails given that linkl fails.

Io,d,l = P [o → d fails | l fails] (1)

The indicator variable quantifies the impact of a particular link failure on a given path. WhenIo,d,l = 1, a
packet fromo to d always goes through linkl. Therefore,o → d will certainly fail, if link l fails. Otherwise,
if l is not used on any path ofo → d, Io,d,l = 0. In this case, failure ofl is irrelevant too → d. WhenIo,d,l

is between 0 and 1 (sayp), it means that some paths ino → d include l and others do not. If a packet is
routed through a path that includes the failed link, it will be lost. Therefore,o → d will fail with probability
p if l fails. This happens when ECMP exist. We sayo → d is affectedby a link failure of l, if Io,d,l > 0.
Figure 4 shows an example of how traffic is evenly split among multiple shortest paths and howIo,d,l value
is computed for every link.

d

0.5

o
0.5

0.5

0.25

0.25

0.125

0.125

0.825

0.75

0.1251.0

Figure 4. From o to d, traffic is evenly split among the shortest paths. For each link l, Io,d,l value is given.

We calculateIo,d,l by extending Dijkstra’s shortest path algorithm as follows. Given a network and a source
node, we store all the shortest paths to each destination instead of storing a single path. LetG∗[o, d] be a
subgraph ofG induced by all the shortest paths from sourceo to destinationd. For convenience, we consider
G∗[o, d] as a directed acyclic graph (dag). Once dagG∗[o, d] is found for an OD pair, we traverseG∗[o, d] by
inserting a unit amount of virtual flow at the root (i.e., source node). We let the total amount of the incoming
flow be equal to that of the outgoing flow (which is split evenly to all the outgoing links of the dag). Finally,
the amount of flow assigned on each link equalsIo,d,l.

Given an OD pair(o, d), we useKod to denote the probability that a single link failure affects patho → d,
and calculate it as follows.

Kod = P [o → d fails | single link failure]

=
1
|E|

∑

l∈E

Io,d,l (2)

We use notationo → r → d to denote the overlay path from nodeo to d via relay r, which is formed
by concatenating the default shortest paths from the source to the relay (i.e., o → r) and the relay to the
destination (i.e., r → d). Figure 5 shows an example of a default path (drawn in solid line) and an overlay
path (drawn in dotted line).

o d

r

default path

overlay path

overlapped link

Figure 5. Solid and dotted lines denote the default and overlay paths, respectively. For resilience, we introduce the

notion of penalty based on the overlapped links.

Now let’s consider when an overlay path is used along with the default one. If linkl is included in both
of the paths (as the overlapped link in the figure), failure of linkl affects both the default and overlay paths.

6

If l is used in only one of the paths, failure ofl does not affect the other path. That is, eithero → d or
o → r → d is irrelevant to the link failure onl; path betweeno andd is resilient to the failure ofl. Therefore,
we consider a fraction of traffic carried on overlapped links (between the default and overlay paths) as a
measure of penalty for using partially disjoint paths.

Given an OD pair(o, d) and a relayr, we useKod(r) to denote the probability that a single link failure
affectso → d ando → r → d simultaneously, and calculate it as follows.

Kod(r) = P [both o → d ando → r → d fail

| single link failure]

=
1
|E|

∑

l∈E

Io,d,l(Io,r,l + Ir,d,l) (3)

We can see from the definition that the penalty of a relay node is zero when the relay provides a completely
disjoint overlay path for an OD pair. It is interesting to note that the penalty value directly reflects the quality
of an overlay path. If this value is fairly small, overlay paths have very few overlapped links with the default
paths. Accordingly, network is more resilient to arbitrary single link failures. For network resilience against
single link failures, we propose using overlay paths that are as disjoint as possible from the default paths. Or
equivalently, we aim at finding a set of relay nodes that minimizes the penalty in (3) for all OD pairs.

Having defined the penalty for a given OD pair and a single relay node, let us now extend the definition to
a set of relay nodes,R. Since our objective is to determine the positions of relay nodes such that every OD
pair has a maximally disjoint overlay path, we should select a relayr ∈ R that yields the least penalty value
in (3). Accordingly, the penalty value of(o, d) under a relay setR is:

Kod(R) = min{Kod(r)|r ∈ R}. (4)

Finally, we define thetotal penalty, P(R) of using a relay setR for all OD pairs as follows:

P(R) =
∑

∀o,d

Kod(R), R ⊂ V, |R| ≤ k. (5)

Given this, our objective is to find a subsetR of V such that theP(R) is minimized, where|R| is not
greater than a given value,k.

3.3. Placement Strategies

In this subsection, we present our placement strategies to find a relay setR of a fixed sizek such that
the total penalty in (5) is minimized. Given a set size,k, an optimal solution is a subsetR of V with the
least total penalty. We denote the optimal solution asOptimal in the rest of the paper. The optimal solution
can be formulated using 0-1 integer programming (IP). The IP formulation of our problem is given in the
Appendix. WhileOptimal gives the best result, it is unlikely that an efficient method for solving it exists
due to computational complexity. In our simulation, we computeOptimal for only limited cases whenk
is significantly small compared ton. In the following, we present two efficient heuristic algorithms: greedy
selection and local search. These two heuristics are simple and intuitive while delivering good performance.

3.3.1. Greedy Selection Algorithm

In our greedy selection, we begin with an empty setR. Then we add a relay noder one by one, that incurs
the maximum decrease in the total penalty given by (5). We iterate this processk times. We refer to this
approach asGreedy.

3.3.2. Local Search Algorithm

We start with an arbitrary set ofk relays and keep improving our solution with a single swap. A single swap
involves removing a relayr ∈ R and adding a new relayr′ /∈ R, if the total penalty is reduced. We repeat
single swaps until there are no improvements. As its name suggests, the solution produced by this algorithm

7

is a local optimum that may or may not be far away from the global optimum. We refer to this approach as
Local.

Refer to detailed algorithms ofGreedy andLocal in the Appendix. For comparison, we consider two other
potential strategies: one that chooses a random set of relay nodes, referred to asRandom, and the other that
selects nodes in a decreasing order of node degree, referred to asDegree.

4. Evaluation of Placement Algorithms
In this section we perform detailed analysis of ourGreedy andLocal algorithms, along with the two other

Random and Degree algorithms. In Section 4.1, we introduce topological datasets used in our evaluation.
In Section 4.2, we compare the four placement algorithms in terms of total penalty they incur. In Section 4.3,
we delve into the topological structures of networks and investigate their impact on certain relay nodes.

4.1. Types of Network Topologies

We use datasets drawn from three different types of topologies – real, inferred, and synthetic. We have
access to only a small number of real topologies, which is a significant limiting factor in exploiting topological
diversity. Thus, we supplement our evaluation with inferred and synthetic topologies. Table 1 summarizes the
network topologies used in evaluation. Each topology is listed with its type, name, number of nodes and links,
and minimum and maximum node degrees. The last column, marked asFailed, shows the percentage of OD
pairs that fail to have completely disjoint paths. If a pair(o, d) fails to find a relayr ∈ V such that the default
and overlay paths have no overlap, then the node pair is said tofail to have completely disjoint overlay paths.
This condition is checked as following.

Kod(V) =
{

> 0 if (o, d) fails to have completely disjoint paths
0 otherwise

After analyzing each failure case, we note that a large portion of OD pairs fail to have completely disjoint
paths due to topological structures or link weights. For some realistic topologies, failures up to 75%, and
above 90% for some synthetic topologies. This finding motivates us to find “partially” disjoint paths with
minimum overlap. In the following we will introduce each topology in detail.

Table 1. Summary of datasets

Topology Topology Nodes Links Degree Failed
Type Name # # (min,max) (%)
Real Abilene 11 14 2, 3 36.36

Backbone ≈ 100 ≈ 200 ≈ 2, 10 53.89
Inferred Exodus 79 147 1, 12 43.58

Ebone 87 161 1, 11 67.83
Tiscali 161 328 1, 29 77.67

Synthetic BA50-2 50 81 2, 17 38.96
BA100-2 100 197 2, 25 30.02

HOT 171 440 1, 10 93.71
mesh 64 112 2, 4 98.43
torus 64 128 4, 4 60.96
ring 64 64 2, 2 4.69

Note: the number of bi-directional links is given inLinks (#)column. Since we consider unidirectional links in our algorithm,|E|
should be doubled. For example, Abilene has 28 unidirectional links.

Two real topologies we use are those of Abilene and an operational tier-1 ISP backbone.Abileneis a high-
performance Internet2 backbone network for universities and research laboratories in the United States [1].
We use the Point-of-Presence (PoP) level map of Abilene. We assume a unit weight for each link (which
essentially simulates a hop-count based routing). Figure 6 depicts the topology of Abilene, where three relays

8

chosen are denoted in triangles2. The operational tier-1 ISP backbone, simply referred to as the Backbone
in the rest of the paper, has an order of magnitude more nodes and links than Abilene. Due to proprietary
nature of the data, Table 1 only provides approximate values for the parameters of the topology. We also have
real link weights from the Backbone. The Backbone has topological structure similar to the one illustrated in
Figure 3, where border routers have two-dimensional square mesh connectivity.

T

S

L

D K
I

C N

W

A

H

Figure 6. Abilene network

We use three of the inferred ISP topologies generated byRocketfuel, a router-level ISP topology inference
engine [29]. Here, link weights are assigned proportional to geographical distances (or delay). It is important
to observe that Rocketfuel topologies are subject to inference errors. In particular, Teixeiraet al. showed that
Rocketfuel has significantly more path diversity than the real topology in case of the Sprint network [34]. We
note that overestimated path diversity may give better result with our algorithms by increasing the chances for
finding disjoint overlay paths. It should also be noted that the result in [34] only applies to Sprint’s Rocketfuel
topology, and may or may not hold for other topologies.

Synthetic topologies are generated usingBRITE, an Internet topology generator [2]. We use the flatAlbert-
Barabasimodel [6] which generates router-level topologies. Each of the BRITE-generated router-level topology
hasn nodes and minimumd number of edges, and is denoted BAn-d. Our settings in BRITE reflect incremental
growth and preferential connectivity [22]. We use latency of each link as its weight, where latency is calculated
proportional to distances between nodes. Node placement is based on a heavy tailed distribution. While the
Albert-Barabasi model approximates scale-free networks, recent work by Liet al. suggests a model – where
low degree nodes are in the center and high degree nodes are at the edge of the network – which is considered
a better reflection of real networks [18]. We use theirHeuristically Optimal Topology (HOT)model, which
consists of 49 core routers and 122 gateway routers. We use unit link weights for all links.

(a) mesh (b) torus

Figure 7. Synthetic networks

We consider three more networks with regular structures, a mesh, a torus, and a ring, each of which has 64
nodes. Ameshhas its nodes placed in a 8 by 8 square grid, where nodes at the edge of the square grid have
lower node degrees than the ones in the center. Atorushas a similar topology to that of a mesh, but the edges
wrap around the torus when they cross the square grid’s boundary. Nodes in aring network form a circular

2Whenk = 3, the same set of relays is chosen for all three algorithms:Local, Greedy, andOptimal as in Figure 6.

9

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

Abilene (11 nodes,real)

Greedy
Local
Random
Degree
LB*

0 5 10 15 20 25 30 35 40 45

10

15

20

25

30

35

40

45

50

55

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

Backbone (100 nodes,real)

Greedy
Local
Random
Degree
LB*

(a) Real topologies

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

40

45

50

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

Exodus (79 nodes,inferred)

Greedy
Local
Random
Degree
LB*

0 5 10 15 20 25 30 35 40 45
15

20

25

30

35

40

45

50

55

60

65

70

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

Ebone (87 nodes,inferred)

Greedy
Local
Random
Degree
LB*

0 5 10 15 20 25 30 35
15

20

25

30

35

40

45

50

55

60

65

70

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

Tiscali (161 nodes, inferred)

Greedy
Local
Random
Degree
LB*

(b) Rocketfuel inferred topologies

0 5 10 15 20 25 30 35 40
10

15

20

25

30

35

40

45

50

55

60

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

BA50−2 (50 nodes,synthetic)

Greedy
Local
Random
Degree
LB*

0 5 10 15 20 25 30 35 40 45 50

10

20

30

40

50

60

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

BA100−2 (100 nodes,synthetic)

Greedy
Local
Random
Degree
LB*

5 10 15 20 25 30
28

30

32

34

36

38

40

42

44

46

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)
HOT (171 nodes,synthetic)

Greedy
Local
Random
Degree
LB*

(c) BRITE generated topologies and HOT model

0 5 10 15 20 25 30 35 40 45

10

15

20

25

30

35

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

mesh (64 nodes,regular)

Greedy
Local
Random
Degree
LB*

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

torus (64 nodes,regular)

Greedy
Local
Random
LB*

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

↑ lower bound

relays (%)

to
ta

l p
en

al
ty

 (
%

)

ring (64 nodes,regular)

Greedy
Local
Random
LB*

(d) Synthetic topologies

Figure 8. Performance comparison of placement heuristics on real, inferred, and synthetic topologies. Since nodes

in torus and ring networks have the same number of node degrees, we do not include Degree plot for those

networks.

10

shape. We use unit link weights for all links. Figure 7 depicts mesh and torus networks, where 6 nodes are
selected as relays, denoted in triangles (Local) and rectangles (Optimal). While these regular graphs are not
particularly realistic in their network configurations, they provide a more neutral context for evaluating our
placement algorithms. By considering a variety of networks, we hope to avoid drawing conclusions that may
be attributable purely to topological idiosyncracies of a particular network.

4.2. Comparison of Total Penalty

We now assess the performance of our heuristic algorithms. Figure 8 compares the four placement algorithms
in terms of total penalty in (5) they incur. The number of the relay nodes has a range of 1 tok (k ≤ n). Total
penalty is normalized such that 100% represents when only default paths are used (i.e., when the default and
overlay paths are identical).

As all our algorithms are based on heuristics, it is hard to fathom how far they are from the best case. As
it is hard to capture the minimum total penalty for all possiblek values, we only compute the lower bound
on total penalty when alln nodes are used as relays. We define a lower bound, LB, ofP(R) in (5) as below:

LB = P(V). (6)

Conceptually, LB captures the notion of each OD pair designating a relay that incurs the least amount of
penalty among alln nodes. Under the assumption of using a single relay per node pair, LB represents the
least total penalty for any topology. A horizontal straight line at the bottom of each graph in Figure 8 indicates
LB. While LB represents the least total penalty, finding the minimum number of relay nodes that achieve LB
is another problem. We use a Set Cover approximation method [28] and obtain an estimate for the minimum
number of relay nodes that produce LB. This estimate is denoted asLB* and marked with a square in the
figure.

In all cases,Greedy and Local consistently perform better thanRandom and Degree. This is plausible
sinceRandom represents the case when no planning is used in relay node placement, whileDegree places
relay nodes at the topk nodes in terms of node degree.Degree’s relays are likely to be heavily involved in
the default paths of many OD pairs, increasing the number of overlapped links when used as relays.

0 5 10

1

2

3

4

relays (%)

ra
tio

Backbone

↑ lower bound

Greedy
Local
Optimal

0 20 40 60

1

2

3

4

relays (%)

ra
tio

Abilene

↑ lower bound

0 1 2 3 4 5

1

2

3

4

relays (%)

ra
tio

HOT

↑ lower bound

0 5 10 15

1

2

3

4

relays (%)

ra
tio

mesh

↑ lower bound

Figure 9. Ratio of total penalty against the lower bound

11

Intuitively, as we place more relays in the network, OD pairs are likely to find overlay paths with less total
penalty. However, the unit gain in total penalty will saturate when an enough number of relays are placed in
the network. This intuition is evident in Figure 8, where all curves flatten out after a while. The knee point
of saturation is different for each heuristic;Local and Greedy tend to reach the knee points with smaller
numbers of relays.

In all graphs in Figure 8, the gap between the total penalty of our heuristics and that of LB is substantial
when less than 5% of nodes are chosen as relays, and it is hard to know how close the total penalty is to
Optimal for the given number of relay nodes. Although we cannot computeOptimal for all possible values
of k due to computational complexity, we can compute it whenk is significantly small compared ton. For a
subset of topologies, namely,Abilene, Backbone, HOT, andmesh, we calculate results fromOptimal and
compare withLocal, Greedy, and Optimal. Figure 9 plots the total penalties fromOptimal, Greedy, and
Optimal as a ratio against that of LB. Ratio of1 indicates that the total penalty is the same as LB (which
is calculated assuming the number of relays isn). Even thoughLocal and Greedy are not optimal, total
penalties from these simple and fast heuristics are almost identical to those fromOptimal. We conclude that
our placement heuristics are simple and intuitive, while delivering near-optimal performance.

4.3. Relay Nodes

So far, we have evaluated the performance of our placement heuristics on a set of topologies. We now
discuss how the topology structure affects the placement heuristics and analyze the properties of the relay
nodes.

4.3.1. Impact of Topology Structure

We observe that in Figure 8, HOT model has a LB value of 30%, which is larger than most other networks,
where LB is around 10%. We discuss what attributes to this high variance and how structures of the topology
in general (and Internet-like topologies in particular) affect the selection of the relay nodes.

For each topology, we examine OD pairs for whom only very little or no improvement is achieved with
overlay paths. Consider the Abilene topology in Figure 6 with three relay nodes. Assuming hop-count based
routing is used, traffic between an OD pair(S, N) is evenly split between two paths: the upper path that goes
via DKIC and the lower path that goes viaLHAW . In this case, all possible overlay paths result in total
penalty of at least2/28. Similar case applies for(T, W). Another apparent example is between the node pair
(C, I), where disjoint overlay path cannot be found using the given relays.

From our analysis, pathological cases where OD pairs fail to find good quality overlay paths are prevalent
in typical ISP networks. This is due to the fact that a typical ISP network topology is not completely random,
but has structural regularities. For example, the number of links connected to a node does not vary over a wide
range, but is limited by the maximum number of slots and ports on a router. Also routers located at one PoP
are connected in such a way that traffic out of the PoP is aggregated and sent out through a small number of
routers, thus forming a certain hierarchy between routers as illustrated in Figure 3. Between an arbitrary pair
of nodes (AR,BR) within a PoP, it is unlikely that there is a good quality overlay path. HOT model has the
highest LB since all 122 gateway routers are singly linked to one of the 49 core routers. Figure 10 shows the

0 50 100 150
0

5

10

node id sorted on degree

no
de

 d
eg

re
e

Figure 10. Node degree distribution of HOT network

12

node degree distribution of HOT network, where the overall distribution of degree is heavy-tailed. A torus, on
the other hand, has many paths between the OD pairs, and therefore, overlay paths are often no worse than
the default paths.

4.3.2. Relay Node Properties

To see which nodes are chosen as relays for each heuristic, we measure the following three metrics and
observe whether relays are selected at the core or at the edge of the network.

• Node degree - the number of incident links of a node
• Hop count - average hop count to other nodes
• Path weight - average path weight (the sum of link weights along the path) to other nodes

Figure 11 plots the distributions of the above three metrics of the relay nodes selected byGreedy, Local,
Random, andDegree (denoted asG, L, R, and D, respectively). For each metric and placement heuristic,
we set the number of relay nodes to 5 and 10% of the nodes. The maximum, median, and minimum values
of the relay node distribution are displayed using error bars. For each metric, the maximum, median, and
minimum for the entire topology are drawn in dotted lines.

In terms of node degree, relay nodes byLocal andGreedy are selected near the median distribution of the
overall nodes for Ebone and Tiscali networks. As expected,Degree’srelay nodes are those with high node
degrees. The result ofRandom varies for each trial, but the median degree of the relay nodes byRandom
stays close to that of the overall nodes. In case of HOT model, relay nodes byLocal andGreedy show unusual
distribution in their node degree as well as in hop count and path weight. This is due to the heavy-tailed node
degree distribution of the HOT model.

When 5% of nodes are chosen as relays,Degree yields significantly smaller hop counts and path weights
than Local and Greedy for Ebone network. This implies routing in Ebone network is done in a way that
OD pairs prefer paths (by IGP costs) that go via nodes with high degree compared to nodes with low degree.
Therefore, high degree nodes are accessible with smaller hop counts by arbitrary nodes. When 10% of nodes
are chosen as relays, the gap between the distribution of each heuristic becomes less noticeable. In case
of Tiscali network, similar observations hold true, however in less noticeable form. This is because Tiscali
network has more high degree nodes than Ebone network.

In summary,Local andGreedy tend to avoid nodes that are the highest in node degree at the cost of taking
a “detour.” Even though high degree nodes seem like a good choice in terms of hop count and path weight
metrics, we note that those nodes are likely to be heavily involved in default paths of many OD pairs, making
them inappropriate for use as relays.

In large networks, detour through disjoint overlay paths could cause some OD pairs to traverse longer paths,
thereby increasing the delay between those OD pairs. In practice, operational backbone networks provision
their networks such that the average load on each link and the average end-to-end propagation delay are
below a certain limit agreed upon in Service Level Agreements (SLA). Our algorithms can be easily modified
to meet both these requirements of networks if we are given with the traffic matrices (for both the default
and overlay traffic), latency of each link, and the detailed service requirements. (More discussions follow in
Section 6.)

13

0

1

2

3

4

5

6

30% relays 60% relays

D
eg

re
e

Abilene

G

GD DR R

L

L

1

1.5

2

2.5

3

3.5

30% relays 60% relays

H
op

 c
ou

nt

Abilene

G G

D D

R RL L

16

18

20

22

24

26

28

30% relays 60% relays

P
at

h
w

ei
gh

t

Abilene

G G

D D

R RL L

0

2

4

6

8

10

12

5% relays 10% relays

D
eg

re
e

Ebone

G G

D D

R
R

L
L

3

4

5

6

7

8

5% relays 10% relays

H
op

 c
ou

nt

Ebone

G G

D

D

R R
L L

8

10

12

14

16

18

20

5% relays 10% relays

P
at

h
w

ei
gh

t

Ebone

G G

D

D
R R

L L

0

5

10

15

20

25

30

5% relays 10% relays

D
eg

re
e

Tiscali

G

G

D D

R

R
L

L

3

4

5

6

7

8

9

10

5% relays 10% relays

H
op

 c
ou

nt

Tiscali

G G

D D

R
R

L L

10

15

20

25

30

5% relays 10% relays

P
at

h
w

ei
gh

t

Tiscali

G G

D
D

R RL L

0

5

10

15

20

25

5% relays 10% relays

D
eg

re
e

BA100−2

G
G

D D

R
RL L

1.5

2

2.5

3

3.5

4

4.5

5

5.5

5% relays 10% relays

H
op

 c
ou

nt

BA100−2

G G

D
D

R
RL L

40

60

80

100

120

5% relays 10% relays

P
at

h
w

ei
gh

t

BA100−2

G G

D
D

R R
L

L

0

2

4

6

8

10

12

5% relays 10% relays

D
eg

re
e

HOT

G GD D

R

R
L

L

4

4.5

5

5.5

5% relays 10% relays

H
op

 c
ou

nt

HOT

G G

D D

R R

L

L

4

4.5

5

5.5

5% relays 10% relays

P
at

h
w

ei
gh

t

HOT

G G

D D

R R

L

L

0

1

2

3

4

5

6

5% relays 10% relays

D
eg

re
e

mesh

G

G

D DR R

L

L

3

4

5

6

7

8

5% relays 10% relays

H
op

 c
ou

nt

mesh

G G

D D
R R

L L

3

4

5

6

7

8

5% relays 10% relays

P
at

h
w

ei
gh

t

mesh

G G

D D
R R

L L

Figure 11. Distribution of the relay nodes by Greedy (G), Local (L), Random (R), and Degree (D) heuristics

14

5. Simulation under Dynamic Network Conditions
Our relay node placement algorithms are based on the assumption that network topologies remain fixed

and we have complete knowledge of the underlying topologies. In practice, network topologies are dynamic
in that there are frequent link and router failures, whether they are caused by manual operations or unplanned
events. In this section, we examine how our heuristic algorithms perform under dynamic network conditions.
In particular, we conduct two sets of simulations: (1) we use a set of network topology snapshots of three
months, taken at the same hour each day, and examine whether the relay nodes selected at the beginning of
the period are still effective over time; (2) we use a network event log of six months and calculate the fraction
of traffic that is affected by network events with and without relay nodes. We use the topology snapshots
and event log of the Backbone. In the following simulation, again, we assume equal amount of traffic flow
between all node pairs. We state that this traffic matrix is hypothetical and does not reflect the real traffic
volume of the Backbone.

5.1. Using Daily Topology Snapshots

We use daily topology snapshots of 113 days taken during October 1, 2004 to January 22, 2005. Each
snapshot has its own set of IGP link weights. The overall numbers of nodes and links vary with a standard
deviation of 1.41 and 3.3, respectively. We examine how much path diversity the relay nodes fixed on Day
1 (Oct. 1, 2004) can provide over the time period, compared to the case of relay nodes changing every day
based on daily topology snapshots. For simulation, we useGreedy and choose 5 and 10 percents of the nodes
as relays.

In Figure 12, we display time-series evolution of total penalty in (5) from three sets of simulations over
113 days. In the first simulation, the set of relay nodes is determined on Day 1 and remains fixed throughout
the entire time period (referred to asinitial placement). In the second simulation, the set of relay nodes is
refreshed (optimized) daily based on the corresponding topology snapshot (referred to asdaily relocation). In
the third simulation, we calculate LB in (6) per daily snapshot. Again, the total penalty here is normalized
such that 100% represents the case when only default paths are used in each snapshot.

Figure 12 shows that the relay nodes from the initial placement scheme perform nearly as well as the
daily relocation scheme. When the number of relay nodes increases from 5% to 10%, then both schemes
almost match the lower bound, LB. We note that our placement algorithms are not very sensitive to network
dynamics. As long as the network topology does not change in a grand scale (e.g., partition of network), our
relay nodes selected based on a topology snapshot accommodate dynamic network conditions (e.g., several
router/link failures or link weight changes) well.

10 20 30 40 50 60 70 80 90 100 110
10

15

20

25

30

day 43

day 102

to
ta

l p
en

al
ty

 (
%

) Initial placement
Daily relocation
Lower bound

(a) Initial placement vs daily relocation using 5% of nodes as relays

10 20 30 40 50 60 70 80 90 100 110
10

15

20

25

30

day 43

day 102

to
ta

l p
en

al
ty

 (
%

) Initial placement
Daily relocation
Lower bound

(b) Initial placement vs daily relocation using 10% of nodes as relays

Figure 12. Comparison of total penalty by different relay placement strategies

15

The normalized total penalty in the figure mostly remains under 15%, but fluctuates over 15% a few times,
noticeably on Days 6, 43, 103, and 108. This is mainly due to the fact that snapshots of the Backbone were
taken during the maintenance window, and thus the network might have not converged yet at the time the
snapshot was taken. In fact, we have verified that, in topology snapshots where total penalty surged, several
link weights were set high, making those links unavailable in the actual routing and decreasing the chance
for OD pairs to find a good quality overlay path; thus the total penalty may increase.

However, the fluctuation might be from other sources as well. In case of Day 43, we notice a sudden increase
in the hypothetical traffic volume carried on one of major links (e.g., links that are heavily used in default
paths of many OD pairs). Since a large portion of OD pairs share the major link, it is also likely that overlay
paths themselves go through the link. This overlap in the default and overlay paths may have increased the
total penalty. For the fluctuations from Days 102 to 113, we have confirmed from the ISP that major upgrades
have been performed on the Backbone (e.g., new high bandwidth links, router operating system updates, etc).

Again, using daily snapshots of the Backbone, we note that our choices for relay nodes are relatively
insensitive to network dynamics; which is very important for a placement algorithm to be viable and practical.

5.2. Using Network Event Log

We use a network event log that spans a six-month period from June 1 to November 30, 2004. The log
contains five types of events: router up, router down, link up, link down, and link weight change. When a
router comes up or goes down, all links incident on the router also come up or down. Sudden link or router
down events usually cause temporary traffic loss for a number of OD pairs, resulting in service disruption.
On the other hand, for router/link up and link weight change events, shortest paths are recomputed and OD
pairs may experience a route change (or a traffic shift) in their default paths. However, such a change has less
detrimental impact compared to router/link failures [7]. Therefore, we only focus on router/link down events
in our simulation. It should be noted that our algorithm is applicable and effective against routing instability
caused by router/link up and link weight change events as well.

We assume that each node re-calculates its routes immediately and instantaneously after each event. We
realize this assumption by updating the topology and recomputing the shortest paths after each event. Relay
nodes, used in the analysis, are chosen based on the topology snapshot at the beginning of the event log (i.e.,
June 1st, 2004), and are kept unchanged even though the topology changes as events unfold. We useGreedy
and choose three and five relay nodes for the simulation. For each event (single/multiple link and/or router
failures), we calculate the fraction of hypothetical traffic affected due to the failure with and without relay
nodes. As defined earlier, a single link failure onl affects OD pair(o, d) by Io,d,l, which is the fraction of
traffic assigned to that particular link. In this way, we determine the fraction of traffic affected due to the
failure for every OD pair.

Figure 13 plots the simulation result, where the x-axis is the percentage of the affected traffic and the y-axis
is the CDF of network events. The plot has three graphs. The first one (drawn in a solid line) shows traffic
affected when only default paths are used. The second graph (drawn in a dash-dotted line) uses both default
and overlay paths with three relay nodes, and the last (drawn in dashed line), with five relay nodes.

When only default paths are used, 35.9% of failure events have no impact on traffic. Though lower than
50%, its impact turns out to be less than we have expected. Detailed analysis of these events show that link
weights were manually set high before the corresponding link failure event. Setting a link weight to a larger
value forces traffic to bypass the link, allowing a “graceful” link shutdown. The remaining events impact only
a small fraction of traffic in the network; for 65.5% of failure events, less than 1% of traffic is affected.

When three relay nodes are used, they provide complete resilience against 52.9% of failure events, which is
a 17% increase, compared to no relay node case. Better still, up to 77% of failure events affect 1% or less of
traffic. When five relay nodes are used, network resilience to real failures increases further. In this case, using
overlay paths provide complete protection against 75.3% of failure events and over 99% protection against
92.8% of failure events. It is also worth noting that a small number of relay nodes chosen at the beginning
of the period remains effective in providing resilience against failures over the entire course of six months.

16

10
−3

10
−2

10
−1

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

Hypothetical traffic lost due to failure (%)

C
D

F

Real failures from a six−month event log

65.5% events lost
less than 1% of traffic

up to these points,
failure events lost
0% of traffic

77%

92.8% wost cases

relay = 0
relay = 3
relay = 5

Figure 13. Impact of failure events on hypothetical traffic with and without relay nodes for a tier-1 ISP network

6. Discussion and Future Work
In this section we look at a number of ways in which our work can be extended. Addressing them is beyond

the scope of this paper, so we leave them as part of our future work.
• Relay Architecture for Service Overlay Network:We have envisioned relay nodes forming an infrastructure,
i.e., a service overlay network, for a value-added service. As stated in the introduction, we have assumed
that relays are simply routers with relaying capability. If routers allow the IP option of loose-source routing
and end hosts use them, the service overlay can be deployed without any modification to the existing routers.
Unfortunately, most service providers disable loose-source routing due to the security threat it poses and the
processing load on the router CPU. An alternative is to realize the relay nodes by attaching servers to routers
as proposed in [14].

We expect certain routers may not be suitable as relays (because of their locations, limited numbers of
interfaces, or constrained CPU). We also note that average end-to-end delay of overlay paths should be below
a limit agreed upon in SLA. We realize these extra requirements by defining a set of routers usable as relays
for a given OD pair asgood, and the others asbad. For example, a router with certain hardware specifications
or higher may be set as good for all OD pairs, whereas a router that provides an overlay path with delay
twice or more than that of the default path may be set as bad for the given OD pair. Then, we incorporate
this information by redefining the penalty of a relayr for OD pair (o, d) asK′od(r).

K′od(r) =
{ Kod if r is bad foro andd
Kod(r) if r is good foro andd

By replacing (3) withK′od(r), we enforce that bad relays are not selected by the OD pairs in (4) and (5).
• Reflecting Real Traffic Matrix:In this work, we have assumed that equal amount of traffic flows between
all OD pairs. However, in real ISP networks, our assumption on homogeneous traffic matrix does not hold.

17

We can easily modify our penalty measure to reflect the real traffic matrix as follows. LetM(i, j) denote the
amount of relative traffic volume such that

∑
∀i,j∈V M(i, j) = 1. Then, by simply multiplying the penalty

measures in (2) and (3) withM(o, d) yields the amount of traffic that is affected by a single link failure.
Given an OD pair(o, d) and a relayr, let K∗od andK∗od(r) denote the amount of default and overlay traffic
affected by a single link failure, respectively. Then, we calculate them as follows.

K∗od = M(o, d) · Kod (7)

K∗od(r) = M(o, d) · Kod(r) (8)

By replacing (3) withK∗od, (5), now (5) denotes the amount of traffic affected by a single link failure for
all OD pairs when we are given a relay set.Greedy andLocal heuristics are still useful in relay placement
considering the real traffic matrix.
• Relay Placement in Inter-Domain Setting:A natural extension of our work is relay placement algorithm that
provide disjoint overlay paths for traffic that span multiple ASes. Path diversity in inter-domain routing is more
complicated, due to scale (e.g., consider all combinations of source and destination) and the policy-governed
route selection of BGP. Since most ASes do not publish their routing policies (such as local preferences in
BGP), we may need to infer inter-domain routing paths from the publicly available BGP feeds as in [19].
Potential challenges include: (1) AS-level path inference (since BGP is policy-based); (2) asymmetries of
AS paths [24] (i.e., forward and backward paths may require different relays); and (3) realistic traffic matrix
that span multiple ASes. Noting that BGP’s best path selection is based on a destination prefix instead of a
destination AS, relay nodes should be selected per prefix, rather than per AS. Finding a small set of relay
nodes that minimizes the number of overlapped links under different and partly unknown routing regimes is
far more challenging. We leave the overlay design issues in inter-domain setting for future work.
• Physical Layer Path Diversity:Our work considers layer-3 path diversity, which is distinct from the physical
layer path diversity. At the physical layer, disjoint IP layer paths may run over the same optical fiber. For more
robustness against link failures, cross-layer check for disjoint paths should be added [32]. Large ISP networks
have access to their physical-layer topology map, and thus intra-domain path diversity may be strengthened
greatly by considering these maps.

7. Conclusions
In this work, we identify the problem of relay node placement in an intra-domain setting for path diversity.

An end-to-end connection may use more than one path to guard against temporary outages from frequent
network changes, provided that those paths are completely disjoint. In reality, unfortunately, it is often not
possible to find completely disjoint paths for all node pairs. We formalize the notion of penalty to quantify
the quality degradation when partial overlap between the default and overlay paths is allowed, and present
two efficient heuristic algorithms that choose relay nodes with the penalty close to minimum. Using three
different types of network topologies, network snapshots, and network event log, we show that a very small
number of relay nodes (typically fewer than 10% of the total number of nodes), are sufficient to provide much
heightened level of protection against everyday network changes.

There are a number of applications that can exploit path diversity for improved QoS within an AS (e.g.,
on-line game traffic, VoIP, resilient security updates, backup line for banking system’s private network). In
such scenarios, placing relays hold critical issue, which should benefit the most from our work. We also
believe that there is more room for further research in this area.

References

[1] Abilene Network, Advanced Networking for Leading-edge Research and Education.http://abilene.
internet2.edu/ .

[2] BRITE, Boston university Representative Internet Topology gEnerator.http://www.cs.bu.edu/brite/ .
[3] PlanetLab. http://www.planet-lab.org .
[4] R. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle. EIGRP-a fast routing protocol based on distance vectors.

In Proceedings of Networld/Interop’94, May 1994.

18

[5] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient overlay networks. InProceedings of ACM
Symposium on Operating Systems Principles (SOSP), October 2001.

[6] A.-L. Barab́asi and R. Albert. Emergence of scaling in random networks.Science, 286:509–512, 1999.
[7] C. Boutremans, G. Iannaccone, and C. Diot. Impact of link failures on VoIP performance. InProceedings of

Network and Operating System Support for Digital Audio and Video (NOSSDAV), May 2002.
[8] R. W. Callon. RFC 1195: Use of OSI IS-IS for routing in TCP/IP and dual environments, December 1990.
[9] S. Casner and S. Deering. First IETF Internet audiocast.ACM Computer Communication Review, 22(3):92–97,

1992.
[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms, 2nd edition. MIT

Press/McGraw Hill, 2001.
[11] T. G. Griffin and B. J. Premore. An experimental analysis of BGP convergence time. InProceedings of the Ninth

International Conference on Network Protocols (ICNP’01), November 2001.
[12] G. Iannaccone, C. N. Chuah, S. Bhattacharyya, and C. Diot. Feasibility of IP restoration in a tier-1 backbone.IEEE

Network Magazine, 18(2):13–19, 2004.
[13] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the placement of Internet instrumentation. In

Proceedings of IEEE INFOCOM, March 2000.
[14] C. Kommareddy, T. Ǵ’uven, B. Bhattacharjee, R. La, and M. Shayman. Intradomain overlays: architecture and

applications. Technical Report, UMIACS-TR 2003-70, 2003.
[15] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing convergence.IEEE/ACM Transactions

on Networking, 9(3):293–306, 2001.
[16] P. P. Lee, V. Misra, and D. Rubenstein. Distributed algorithms for secure multipath routing. InProceedings of

IEEE INFOCOM, March 2005.
[17] J. Li, P. Reiher, and G. Popek. Resilient self-organizing overlay networks for security update delivery.IEEE/JSAC,

Special Issue on Service Overlay Networks, 22(1):189–202, 2004.
[18] L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to understanding the Internet’s router-level

topology. InProceedings of ACM SIGCOMM, August 2004.
[19] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On AS-level path inference. InProceedings of ACM SIGMETRICS,

June 2005.
[20] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot. Characterization of Failures in an

IP Backbone. InProceedings of IEEE INFOCOM, March 2004.
[21] N. F. Maxemchuk. Dispersity routing. InProceedings of International Conference on Communications (ICC), June

1975.
[22] A. Medina, I. Matta, and J. Byers. On the origin of power laws in Internet topologies.ACM Computer

Communication Review, 30(2):18–28, 2000.
[23] J. Moy. RFC 2328: OSPF version 2, 1998.
[24] V. Paxson. End-to-end routing behavior in the Internet.IEEE/ACM TON, 5(5):601–615, 1997.
[25] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive technology into the

Internet. InProceedings of HotNets–I, October 2002.
[26] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of web server replicas. InProceedings of IEEE

INFOCOM, April 2001.
[27] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,

G. Voelker, and J. Zahorjan. Detour: a case for informed Internet routing and transport.IEEE Micro, 19(1):50–59,
1999.

[28] P. Slav́ık. A tight analysis of the greedy algorithm for set cover.Journal of Algorithms, 25(2):237–254, 1997.
[29] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel. InProceedings of ACM

SIGCOMM, August 2002.
[30] A. Sridharan, S. Moon, and C. Diot. On the correlation between route dynamics and routing loops. InProceedings

of ACM SIGCOMM IMC, October 2003.
[31] J. W. Stewart.BGP4: Inter-Domain Routing in the Internet. Addison Wesley, 1998.
[32] J. Strand, A. Chiu, and R. Tkach. Issues for routing in the optical layer.IEEE Communications Magazine,

39(2):81–87, 2001.
[33] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: Offering Internet QoS using overlays. In

Proceedings of HotNets–I, October 2002.
[34] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker. In search of path diversity in ISP network. InProceedings

of ACM SIGCOMM IMC, October 2003.

19

Appendix
1.1. Integer Programming Formulation

The objective function has a form that maximize (or minimize) the sum of all variables. More specifically,
the objective functions are stated as the following. The 0-1 variableyi, i ∈ V , indicates whether the location
i is selected as a relay, and the 0-1 variablexijz, i, j, z ∈ V , indicates whether OD pair(j, z) is assigned to
the relay ati:

minimize
∑

i,j,z∈n

Kjz(i) xijz (9)

subject to
∑

i∈V

xijz ≥ 1 for each j, z ∈ V, (10)

xijz ≤ yi for each i, j, z ∈ V, (11)∑

i∈V

yi ≤ k, (12)

xijz ∈ {0, 1}, for each i, j, z ∈ V, (13)

yi ∈ {0, 1}, for each i ∈ V . (14)

The set of constraints (10) ensures that each OD pair(j, z) is assigned to some relayi ∈ V , the set of
constraints (11) ensures that, whenever OD pair(j, z) is assigned to a relayi, then a relay must have been
selected ati, and (12) ensures that at mostk relays are chosen. Due to computational complexity, solving the
problem is usually done relaxing the constraints (13) and (14) and allowing thexijz and yi to take rational
values between 0 and 1.

1.2. Greedy Selection

Following steps describe howGreedy heuristic works.

P (R) =
∑

∀o,d∈V

min{Kod(r)|r ∈ R}

Algorithm 1 GreedySelection
Input: A graphG(V, E) of a network
Output: A set of relay nodesR

R ← ∅
while |R| < k do

for all ri ∈ V \R do
CalculateP (R ∪ {ri})

end for
Let rk = arg minrj∈V \RP (R ∪ {rj})
R ← R ∪ {rk}

end while

20

1.3. Local Search

Following steps describe howLocal heuristic works.

Algorithm 2 LocalSearch
Input: A graphG(V, E) of a network
Output: A set of relay nodesR

Let R ⊂ V be an arbitrary subset of sizek
while there are no changes inR do

for all v ∈ R andv′ ∈ V \R do
if P (R) > P (R− v + v′) then

R ← R− v + v′

end if
end for

end while

