
Prefix-Preserving IP Address Anonymization: Measurement-based Security
Evaluation and a New Cryptography-based Scheme�

Jun Xu Jinliang Fan Mostafa H. Ammar Sue B. Moon
College of Computing Sprint ATL

Georgia Institute of Technology 1 Adrian Court
Atlanta, GA 30332-0280 Burlingame, CA 94010

fjx,jlfan,ammarg@cc.gatech.edu sbmoon@sprintlabs.com

Abstract– Real-world traffic traces are crucial for Inter-
net research, but only a very small percentage of traces col-
lected are made public. One major reason why traffic trace
owners hesitate to make the traces publicly available is the
concern that confidential and private information may be
inferred from the trace. In this paper we focus on the prob-
lem of anonymizing IP addresses in a trace. More specifi-
cally, we are interested in prefix-preserving anonymization
in which the prefix relationship among IP addresses is pre-
served in the anonymized trace, making such a trace us-
able in situations where prefix relationships are important.
The goal of our work is two fold. First, we develop a
cryptography-based, prefix-preserving anonymization tech-
nique that is provably as secure as the existing well-known
TCPdpriv scheme, and unlike TCPdpriv, provides consis-
tent prefix-preservation in large scale distributed setting.
Second, we evaluate the security properties inherent in all
prefix-preserving IP address anonymization schemes (in-
cluding TCPdpriv). Through the analysis of Internet back-
bone traffic traces, we investigate the effect of some types of
attacks on the security of any prefix-preserving anonymiza-
tion algorithm. We also derive results for the optimum man-
ner in which an attack should proceed, which provides a
bound on the effectiveness of attacks in general.

1 Introduction

Real-world Internet traffic traces are crucial for network
research such as workload characterization, traffic engineer-
ing, web performance, and more generally network per-
formance analysis and simulation. However, only a tiny
percentage of traffic traces collected are made public (e.g.,
by NLANR/MOAT Network Analysis Infrastructure (NAI)
project [1] and ACM ITA project [2]) for research pur-
poses. One major reason why ISPs or other traffic trace
owners hesitate to make the traces publicly available is the
concern that the confidential (commercial) and private (per-

�This work is supported in part by NSF grant ITR/SY 0113933, NSF
grant ANI 9973115, and a grant from Sprint labs.

sonal) information regarding the senders and receivers of
packets may be inferred from the trace. In cases where a
trace has been made publicly available, the trace is typi-
cally subjected to an anonymization process before being
released.

A straightforward approach to anonymizing a packet
trace is to map each distinct IP address appearing in the
trace to a random 32-bit “address”. The only requirement
is that this mapping be one-to-one. Anonymity of the IP
addresses in the original trace is achieved by not reveal-
ing the random one-to-one mapping used in anonymizing
a trace. Such anonymization, however, results in the loss
of the prefix relationships among the IP addresses and ren-
ders the trace unusable in situations where such relationship
is important (e.g., routing performance analysis, or clus-
tering of end-systems [3]). It is, therefore, highly desir-
able for the address anonymization to be prefix preserving.
That is, if two original IP addresses share a k-bit prefix,
their anonymized mappings will also share a k-bit prefix.
One approach to such prefix preserving anonymization is
adopted in TCPdpriv developed by Greg Minshall [4].

In this work we first formally characterize prefix-
preserving anonymization functions by showing that the set
of such functions follow a canonical form. TCPdpriv can
be viewed as a table-based approach that generates a func-
tion randomly from this set. It may produce inconsistent
prefix-preserving anonymization (i.e., same original prefix
mapped into different anonymized prefixes) when used in-
dependently on more than one trace. We develop an alterna-
tive cryptography-based, prefix-preserving anonymization
technique to address this issue, and prove rigorously that the
proposed technique maintains the same level of anonymity
as TCPdpriv.

Second, we are interested in analyzing the security prop-
erties inherent in prefix-preserving IP address anonymiza-
tion in general (whether using TCPdpriv or the proposed
scheme). We aim to understand its susceptibility to at-
tacks that may reveal some IP address mappings (e.g., [5]).
Through analysis of real-world IP traffic traces, we investi-
gate the effect of some types of attacks on the security of the

1

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

prefix-preserving anonymization process. In the process,
we derive some results pertaining to the optimum manner
in which an attack should proceed with the goal of under-
standing the bounds on the performance of attacks in gen-
eral.

Although our results can be used to analyze the ef-
fect of attacks on an anonymized trace, we believe that
it is outside the scope of our work to make any conclu-
sions regarding how “safe” it is to release an anonymized
trace. We stress that our work constitutes a scientific
endeavor, intended to explore the potential and limits of
prefix-preserving anonymization as a way to simultane-
ously satisfy the needs of network researchers and the con-
cerns of trace owners. We realize that the decision to release
data, even in anonymized form, is affected by many non-
technical issues. Our role is to provide a technical founda-
tion for such decision making.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce our result regarding the canonical form
of a prefix-preserving anonymization scheme. We also
describe the operation of TCPdpriv and present our own
cryptography-based scheme. In Section 3 we describe cryp-
tographic and semantic attacks; two forms of attacks that
may potentially be used to defeat an anonymization scheme.
Section 4 proves the immunity of our cryptography-based
anonymization scheme from cryptographic attacks. In Sec-
tion 5, we develop a framework for evaluating the effects
of semantic attacks on anonymization schemes in general
(including TCPdpriv and our cryptography-based scheme).
We then use the framework to derive numerical results
demonstrating the effects of certain attacks on real-world
traces. The paper is concluded in Section 6.

2 Prefix-Preserving Anonymization

We begin this section with a formal definition of prefix-
preserving anonymization.

Definition 1 (Prefix-preserving Anonymization1)
We say that two IP addresses a = a1a2 � � �an and b =
b1b2 � � � bn share a k-bit prefix (0 � k � n), if a1a2 � � � ak
= b1b2 � � � bk, and ak+1 6= bk+1 when k < n 2. An
anonymization function F is defined as a one-to-one func-
tion from f0; 1gn to f0; 1gn. An anonymization function F
is said to be prefix-preserving, if, given two IP addresses a
and b that share a k-bit prefix, F (a) and F (b) also share a
k-bit prefix.

It is useful for our future analysis to consider a geomet-
ric interpretation of this form of anonymization. We first
note that the entire set of possible distinct IPv4 addresses
can be represented by a complete binary tree of height 32.
The set of distinct addresses present in an unanonymized

2For all known packet traces, n = 32, as an IPv4 address has four
bytes.

trace can be represented by a subtree of this complete bi-
nary tree where each address is represented by a leaf. We
call this the original address tree. Each node in this orig-
inal address tree (excluding the root node) corresponds to
a bit position, indicated by the height of the node, and a
bit value, indicated by the direction of the branch from its
parent node. Figure 1(a) shows a complete binary tree (us-
ing 4-bit addresses for simplicity) and Figure 1(b) shows an
original address tree.

A prefix-preserving anonymization function can be
viewed as specifying a binary variable for each non-leaf
node (including the root node) of the original address tree.
This variable specifies whether the anonymization function
“flips” this bit or not. Applying the anonymization func-
tion results in the rearrangement of the original address tree
into an anonymized address tree. Figure 1(d) shows the
anonymized address tree resulting from the anonymization
function shown in Figure 1(c). Note that an anonymization
function will, therefore, consist of at least I binary variables
if the original address tree has I non-leaf nodes.

Although what we have presented is clearly a method for
prefix-preserving anonymization, it is not immediately ob-
vious that this is the only method. In the following theorem,
we prove that this is indeed the only method.

Theorem 1 (Canonical Form Theorem) Let fi be a func-
tion from f0; 1gi to f0; 1g, for i = 1; 2; � � � ; n � 1 and f0
is a constant function. Let F be a function from f0; 1gn to
f0; 1gn defined as follows. Given a = a1a2 � � � an, let

F (a) := a01a
0
2 � � � a

0
n
; (1)

where a0
i
= ai � fi�1(a1; a2; � � � ; ai�1), and � stand for

the exclusive-or operation, for i = 1; 2; � � � ; n: We claim
that (a)F is a prefix-preserving anonymization function and
(b) A prefix-preserving anonymization function necessarily
takes this form.

Proof: (a) Suppose two raw addresses a = a1a2 � � �an and
b = b1b2 � � � bn share a k-bit prefix; that is, a1a2 � � � ak =
b1b2 � � � bk, and, if k < n, ak+1 = bk+1 (or equivalently
ak+1 = bk+1). Then for i = 1; 2; � � � ; k, a0

i
= ai �

fi�1(a1; a2; � � �, ai�1) = bi � fi�1(b1, b2, � � �, bi�1) =
b0
i

and, if k < n, a0
k+1

= ak+1 � fk(a1, a2, � � �, ak) = bk+1

� fk(b1, b2, � � �, bk) = b0
k+1

(b) This is equivalent to proving that given any prefix
preserving function F , we can find corresponding fi; i =
0; 1; � � � ; n � 1 in the above form. Given any F and any
i; 0 � i � n � 1, we define fi as follows. Given
any i-bit sequence a1a2 � � � ai, we append an arbitrary
n � i bit sequence ai+1ai+2 � � �an to it. Then we define
fi(a1; a2; � � � ; ai) := c, where c is the (i + 1)-th bit of
F (a1a2 � � � an) � ai+1. It remains to show that fi is well-
defined: different choices of ai+1; ai+2; � � � ; an lead to the
same c value. Given another sequence bi+1bi+2; � � � ; bn,
we show c = c0, where c0 is computed as (i + 1)-th bit
of F (a1a2 � � � aibi+1 � � � bn) � bi+1. We only need to dis-
cuss following two cases:

2

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

0
0
0
1

0
0
1
0

0
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

0
1
1
1

0
1
0
0

1
0
0
1

1
0
1
0

1
0
0
0

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
1

1
1
0
0

1
0
0
0

1
0
1
1

1
1
1
0

1
1
1
1

0
0
0
1

0
0
1
0

0
0
0
0

0
1
0
1

0
1
0
0

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

Flip

Leaf Node
Do Not Flip

0
0

0
0

0
0
1
0

0
0
0
0

0
1
1
1

0
1
1
0

1
1
0
1

1
1
1
1

1
1
0
0

1
0
0
1

1
0
0
0

(a) address space (b) original address tree (c) anonymization function (d) anonymized address tree

Figure 1. Address Trees and Anonymization Function

(1) When ai+1 = bi+1, F (a1a2 � � � aiai+1 � � � an) and
F (a1a2 � � � aibi+1 � � � bn) should have the same (i + 1)-th
bit (denoted as d) since F is prefix-preserving. So c =
d� ai+1 = d� bi+1 = c0.
(2) Similarly, we can show c = c0 when ai+1 = bi+1. 2
Remark: Note that there is a natural one-to-one map-
ping between the canonical form of a prefix-preserving
anonymization function and its graphical representation.
Each node in an anonymization tree (see figure 1), as repre-
sented by its prefix a1a2 � � � ak, will be labeled “flip” or “no
flip”, when f(a1a2 � � � ak) = 1 or 0, respectively.

In the following, we describe TCPdpriv, an existing
traffic anonymization tool that, among other things, al-
lows the prefix-preservation anonymization of IP addresses.
We describe how TCPdpriv implements prefix-preserving
anonymization and identify its properties. We then dis-
cuss our cryptography-based prefix-preserving anonymiza-
tion algorithm that possesses additional functionality. Fi-
nally, we define metrics for the level of security that is con-
strained by the prefix-preserving requirement and show that
both TCPdpriv and our scheme achieve this same level of
security.

2.1 TCPdpriv and Its Properties

TCPdpriv’s implementation of the prefix-preserving
translation of IP addresses is table-based: it stores a set of
<raw, anonymized> binding pairs of IP addresses to main-
tain the consistency of the anonymization. When a new
raw IP address a needs to be anonymized, it is first com-
pared with all the the raw IP addresses inside the stored
binding pairs for the longest prefix match. Suppose the
binding pair whose raw address has longest prefix match
with a = a1a2:::an is <x, y> (let x = x1x2 � � �xn and
y = y1y2 � � � yn), and the length of the match is k. Suppose
a is anonymized to b = b1b2 � � � bn. Then b1b2 � � � bkbk+1 =
y1y2 � � � ykyk+1 and yk+2yk+3 � � � yn = rand(0; 2n�k�1 �
1), where rand(x; y) generates a pseudorandom (not re-
quired to be cryptographically strong) number between x
and y. If a 6= x, <a,b> will be then added to the binding

table.
When a binary trie data structure is used, the search for

the longest prefix match has the cost of O(n), where n is
the number of bits in the address. The memory require-
ment of the algorithm is O(M), where M is the number of
binding pairs stored. We refer readers to the source code of
TCPdpriv [4] for the actual data structure and algorithm.

Despite the elegance and simplicity of the TCPdpriv
implementation, it does not facilitate the parallel and dis-
tributed (yet consistent) anonymization of traffic traces for
two main reasons:

First, CPdpriv does not allow distributed processing
of different traces simultaneously. Like other prefix-
preserving anonymization functions, TCPdpriv can be
mapped to the canonical form shown in Theorem 1. For
TCPdpriv, the functions ffig0�i�n�1 in the canonical form
are trace-dependent: they are determined by the raw IP
addresses and the relative order in which they appear in
a trace. Therefore, a raw address appearing in different
traces may be mapped to different anonymized addresses
by TCPdpriv, hence the inconsistency3. However, there is
a real need for simultaneous (yet consistent) anonymization
of traffic traces in different sites, e.g., for taking a snapshot
of the Internet. It would be very cumbersome if hundreds
of traces have to be gathered first and then anonymized in
sequence.

Second, a large trace (e.g., terabytes) may be collected
for a high-speed link for a long period of time. For the
same reason discussed above, TCPdpriv does not allow a
large trace file to be broken down into pieces and processed
in parallel consistently.

2.2 A Cryptography-based Scheme

We have designed an algorithm that addresses the afore-
mentioned properties of TCPdpriv by deterministicly map-

3TCPdpriv may be modified to allow the binding table used in one
anonymization session to be saved and used in another session for consis-
tent anonymization. However, the binding table is large and can be cum-
bersome for distribution. Also the anonymization process still has to be
serialized.

3

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

ping raw addresses to anonymized addresses based on a rel-
atively small key (compared to the M -entry binding table),
which facilitates distributed and parallel anonymization of
traffic traces. We show that the algorithm is provably secure
up to the level of security a prefix-preserving anonymization
could possibly deliver.

Based on the canonical form in Theorem 1, our
cryptography-based scheme is defined as instantiating func-
tions fi in (1) with cryptographically strong stream ciphers
or block ciphers as follows:

fi(a1a2 � � � ai) := L(R(P (a1a2 � � �ai); �)) (2)

where i = 0; 1; � � � ; n�1 andL returns the “least significant
bit”. Note that we are able to specify this scheme in such a
succinct way thanks to the formulation and proof of Theo-
rem 1. Here R is a pseudorandom function or a pseudoran-
dom permutation (i.e., a block cipher) such as Rijndael [6],
and P is a padding function that expands a1a2 � � �ai into
a longer string that matches the block size of R. � is the
cryptographic key used in the pseudorandom function R.
Its length should follow the guideline (e.g., between 128
and 256 bits in 32-bit steps in Rijndael) specified for the
pseudorandom function that is actually adopted.

As we can see from (2), the cryptography-based
anonymization function is uniquely determined by �. In
other words, an unanonymized address appearing in two
different traces will be mapped to the same anonymized ad-
dress if the same key is used to anonymize both traces. So,
for consistent distributed anonymization of multiple traces,
the � needs to be distributed to various hosts or sites where
the anonymization will occur. A secure key distribution
scheme (such as [7, 8, 9]) suitable for the specific require-
ments (e.g., scalability) of an organization can be used for
this purpose.

The new scheme is designed to be generic: any secure
stream and block ciphers, which can be modeled as pseu-
dorandom functions (PRF) or pseudorandom permutations
(PRP), may be used in place of R. In the following sec-
tion, we characterize the best possible security level of F
and show that it is provably secure (up to that level) based
on the assumption that R is a PRF (PRP is a special case of
PRF).

We implemented our scheme by instantiating R with Ri-
jndael, a secure block cipher that has been adopted by NIST
as AES [6]. As a block cipher, Rijndael can be modeled
as strong pseudorandom permutation [10, 11, 12], which is
the base assumption for provable security of our scheme.
We found that the scheme can process 10,000 packets per
second on a 800 MHz Intel Pentium III processor, fast
enough for practical purposes. This speed can be doubled if
the scheme precomputes and stores the anonymization re-
sult for the first 16 bits, costing 128 KB4. Note that since

4Storing such intermediate results in a software cache with appropri-
ate replacement policies (e.g., LRU) may result in even higher improve-
ment on the overall anonymization speed, when there is a decent amount

this cache is deterministicly generated from the key, it will
not interfere with parallel and distributed execution of the
scheme.

3 Attacks on Anonymization Schemes

In this section, we discuss two possible ways in which
our scheme may be attacked. An intruder is assumed to
have compromised (gain full knowledge to) the bindings be-
tween certain number of raw and anonymized address pairs
through means other than compromising the key (i.e., the
known plaintext attack model). We identify the following
two types of the attacks: the first affects only our scheme
and the second affects TCPdpriv and our scheme to the
same extent.

Cryptographic Attack. Aided by the knowledge of the
compromised raw-anonymized address pairs, the intruder
tries to infer the cryptographic key used in the anonymiza-
tion algorithm (� in (2)) using all possible cryptanalysis
techniques. TCPdpriv is not susceptible to this attack.

Semantic Attack. Without compromising the crypto-
graphic keys, the attacker may still be able to infer a part of
(typically a prefix) or even whole unanonymized addresses
from an anonymized address by exploiting the semantics of
prefix-preserving and traditional cryptanalysis techniques
such as frequency analysis. This process can again be aided
by the knowledge of the compromised addresses. Note that
the semantic attack is inherent with the prefix-preserving
anonymization scheme: all prefix-preserving schemes (in-
cluding TCPdpriv and our scheme) are subject to this type
of attack to the same degree.

We will prove that the security of our scheme against
cryptographic attack depends solely on the strength of the
pseudorandom function used in its construction (R in (2)).
It is not dependent on the data that is anonymized. The
robustness of our scheme against semantic attack, on the
other hand, is dependent on certain “entropy” property that
may vary from trace to trace. Therefore, it is assessed by
measuring such properties on specific traces.

In the sequel we study both attacks in detail. In Sec-
tion 4 we show that our scheme is provably secure against
cryptographic attack. In Section 5, we investigate the effec-
tiveness of semantic attacks through measurements on real
unanonymized packet traces.

4 Security Analysis of Cryptographic Attack

In this section, we prove that our scheme defined by (1)
and (2) achieves the highest level of security achievable
by prefix-preserving schemes when the adversaries are as-
sumed to be computationally bounded. In stating the theo-
rems and the proofs, we follow the standard notions of secu-
rity and proof techniques in the provable security literature
[14, 15].

of locality [13] in the trace. However, such improvement can be highly
trace-dependent.

4

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

We first characterize the highest level of security achiev-
able by any prefix-preserving anonymization scheme. Sup-
pose that a set of N anonymized addresses S have been
compromised. Given an arbitrary anonymized address b
(fixed after it is chosen), suppose k is the longest prefix
match between b and the elements in S. Then, due to the
prefix-preserving nature of the anonymization algorithm,
the first (k + 1) bits of the corresponding raw address, re-
ferred to as a, are revealed as mentioned before. The highest
level of security that can be achieved is then to ensure that
the remaining (n � k � 1) bits are indistinguishable from
random bits to adversaries.

In order to formalize this concept we first introduce the
following definitions:

Definition 2 (adapted from [16]) Suppose p0 and p1 are
two probability distributions on the set f0; 1gl, bit strings
of length l. Let A : f0; 1gl ! f0; 1g be a probabilis-
tic (randomized) algorithm. Let � > 0 and two random
variables X0 and X1 have distributions p0 and p1 respec-
tively. We say that A is an �-distinguisher of p0 and p1
provided that jPr(A(X0) = 1) � Pr(A(X1) = 1)j � �.
We say that p0 and p1 are �-distinguishable if there exists
an �-distinguisher of p0 and p1.

Definition 3 We call a function F : U ! V to be (q,t,�)-
pseudorandom, when there is no algorithm A that, given
any x 2 U at A’s choice, can be an �-distinguisher between
the uniform distribution on V and the distribution of F (x).
Here A is allowed to use F as an oracle on q points of its
choice different from x and spends no more than t computa-
tion time. Note here that the distribution of F (x) is induced
by the distribution of F in function space. So, equivalently,
we can say that the function F is �-indistinguishable from a
random function, which can be viewed as a random vari-
able uniformly distributed in the set of all functions from U
to V .

With the above definitions in mind a prefix preserving
scheme can be said to attain its highest level of security if
the algorithm F is indistinguishable from a random prefix-
preserving function, a function uniformly chosen from the
set of all prefix-preserving functions.

We prove in Theorem 2 that the cryptography-based
scheme achieves the aforementioned level of security
when the adversaries are assumed to be computationally
bounded. In contrast, in TCPdpriv, this indistinguishability
is achieved in the information-theoretical sense: the adver-
sary does not need to be computationally bounded. This,
however, comes at the cost of maintaining a large binding
table (essentially a one-way pad).

The notations (S, N , b, a, and k) introduced in the para-
graph before the last will be used throughout this section,
and a = a1a2 � � � an. Given (S,N , b, a, k) as defined above,
we define ~F : f0; 1gn�k�1 ! f0; 1gn�k�1 in which ~F (x)
is defined as the last (n�k�1) bits of F (a1a2 � � � ak+1jjx).
Here F is defined as in (1), x 2 f0; 1gn�k�1, and “jj” rep-
resents concatenation.

Theorem 2 Given the knowledge of compromised ad-
dresses S, if the function R in (2) is a (32*(N+1),
t, �

2n�n
)-pseudorandom function, then ~F�1 is a (0,t,�)-

pseudorandom function. In other words, given any
y 2 f0; 1gn�k�1, the distribution of ~F�1(y) is not �-
distinguishable from uniform distribution on f0; 1gn�k�1

for all algorithms A that runs for no more than t time.

Proof: Since R is a (32*(N+1), t, �

2n�n
)-pseudorandom

function, by Lemma 1, ~F is a (0,t, �

2n
)-pseudorandom func-

tion. Then by Lemma 2, this implies that ~F�1 is a (0,t,�)-
pseudorandom function. 2

For better continuity of text, we state without the proof
the lemmas used in proving Theorem 2. Their detailed
proofs are in [17].

Lemma 1 If R is a (32*(N+1), t, �

n
)-pseudorandom func-

tion, then ~F is a (0,t,�)-pseudorandom function even with
the knowledge of S.

Lemma 2 If a permutation G : V ! V is a (0, t,
�)-pseudorandom function, then G�1 is a (0, t, �jV j)-
pseudorandom function.

Remark: If the only assumption aboutG is that it is a pseu-
dorandom function, then this bound of (�jV j) for G�1 is in-
deed tight. An instance where this bound is tight is shown
in the remark after the proof of Lemma in [17].

In this section, we formally characterize the notion of
provable security (Definition 2 and 3) in our context: in-
distinguishability between our anonymization function and
a random prefix-preserving function to a computationally
constrained adversary (with no more than t computation
time). We prove rigorously that our scheme is secure
against cryptographic attacks based on this notion of prov-
able security. In the next section, we proceed to explore
the security of our scheme and TCPdpriv against semantic
attacks.

5 Evaluation of the Semantic Attacks

In this section, we study the security of prefix-preserving
anonymization against semantic attacks. Since the risk
of semantic attacks is inherent with all prefix-preserving
anonymization schemes, the findings of this study apply to
all schemes, including ours and TCPdpriv. Our goal here is
to provide a framework for evaluating the privacy risks in
releasing an anonymized trace so that trace owners may be
better equipped to make informed decisions about releasing
anonymized traces.

The security implications of prefix- preserving anony-
mization of traffic traces using TCPdpriv [4] are briefly
studied in [5] and [18]. Here we offer a more formal
approach to characterize the security of prefix-preserving
anonymized traces against semantic attacks. Our contribu-
tion is summarized as following:

5

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

1. We provide a framework (including a set of metrics)
for evaluating the effect of attacks on anonymized
traces. The framework assumes that an attack is char-
acterized by the number of address mappings that are
compromised and by properties that compromised ad-
dresses may have (e.g., random, all DNS addresses or
frequently-occurring addresses).

2. We show that, for the traces we examine, an attacker
that compromises a random set of addresses causes ap-
proximately the same damage as a more careful at-
tacker which compromises the same number of ad-
dresses optimally. This seems to indicate that com-
promising addresses at random is a good means of at-
tacking prefix-preserving anonymization.

3. We show that two “obvious” attacks: using frequency
analysis and compromising all DNS server addresses,
yield as much damage as a small number of randomly
compromised addresses. We also discuss the feasibil-
ity and likely effectiveness of other more elaborate at-
tacks.

5.1 Metrics to Measure Effect of Attacks

When we study the security of an anonymized trace, we
would like to measure the amount of information that is
leaked from or kept untouched in the whole trace as a con-
sequence of compromising some address mappings. Note
that the specifics of the attack by which address mappings
have been compromised is not important, and what ulti-
mately matters is the result of the attack, i.e., the number
of compromised addresses and their properties.

In this section we define three metrics to measure the ef-
fect of attacks on anonymized traces. Each measure reflects
a different security concern.

The number of unknown compressed bits, C: When
some address mappings are compromised, the states of
some nodes of the anonymization function (see figure 1) are
revealed and the anonymization function is partially com-
promised. This leads to the definition of C as the total num-
ber of nodes in the anonymization function whose states are
not known. Note that C corresponds to the entropy of the
anonymization function after the attack.

The number of unknown uncompressed bits, U : An-
other concern is the security state of the anonymized ad-
dresses. When some address mappings are compromised,
all the bits in the compromised addresses are revealed.
In addition and due to the prefix-preserving nature of the
anonymization algorithm, certain bits in other addresses are
also revealed. This leads to the definition of U as the total
number of bits that are not known, in all addresses.

The number of addresses with exactly i known most
significant bits, Fi: Neither C nor U describe exactly
where bits have been revealed. We, therefore, measure Fi

defined as the total number of addresses that has exactly i
most significant bits known, where 0 � i � 32.

5.2 An Evaluation of Attacks on Real Traces

Recall that we model the effect of an attack by the num-
ber of compromised addresses and the properties associated
with them. In this section we consider the effect of compro-
mising N addresses chosen either randomly or according
to a greedy algorithm (which we prove is optimal for some
measures).

We present results based on a trace from Tier-1 ISP link
and a publicly available one from NLANR [19]. Note that
both traces contain real (unanonymized) IP addresses5. The
properties of the two traces are shown in Table 1.

Figure 2(a) shows the number of nodes in each level of
the original address tree built from the NLANR trace. The
figure shows that the number of nodes increases when the
level increases. It also shows that the tree is quite dense
on the top but becomes sparser as it progresses towards the
leaves representing the IP addresses. Similar figures are
obtained from the Tier-1 ISP trace and are shown in fig-
ure 2(b).

Effect of Compromising Random Addresses We first
consider the effect of compromising a random number of
addresses. Figures 3(a),(b) and (c) are simulation results on
the NLANR trace and show how U and C decrease as the
number of compromised IP addresses increases. The results
are obtained by randomly choosing a certain number of ad-
dresses from the NLANR trace and evaluating the C and
U measures assuming they are compromised. This is re-
peated 10 times and the graphs represent the average of the
experiments. Figures 3(b) and (c) magnify the portion of
3(a) when the number of compromised IP addresses ranges
from 0 to 3000 and 0 to 300, respectively.

We can see in the graphs that the value of C drops al-
most linearly with respect to the number of compromised
IP addresses, which means the anonymization function is
quite resistant to the attacks. The value of U drops very fast
initially and flattens out. This implies that an ordinary ad-
dress has a very high probability to have several of its 32
bits revealed (prefix bits) but a low probability to have a
large number of them revealed.

Figures 3(d), (e) and (f) are simulation results on the
NLANR trace and show Fi, the number of addresses who
have had exactly i most significant bits revealed, for i =
0; :::; 32 and various values of N . Figures 3(e) and (f) mag-
nify the portion of 3(d) when the number of compromised
IP addresses ranges from 1 to 3000 and 1 to 300, respec-
tively. The ridge in figure 3(d) shows that the effect of the
attack is relatively low when the total number of compro-
mised address mappings is a small proportion of the to-
tal number of addresses, e.g., no more than 20,000 out of
130,163. The ridge in figure 3(d) shows that most addresses
have around 16 bits compromised when there are approxi-
mately 2000 addresses compromised. This could mean that
privacy is preserved in situations where the least significant

5The NLANR trace is an destination-IP-address-only trace.

6

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

Tier-1 ISP NLANR [19]
Type Full Header Destination IP Only
Location Packet-Over-SONET OC3 link N/A
Start Time 09:56 PDT 8/9/2000 N/A
End Time 19:56 PDT 8/9/2000 N/A
Size 50GB Binary 930MB ASCII
Number of Packets 567,680,718 31,518,464
Number of Distinct Addresses 1,423,937 130,163

Table 1. Example Traces

1

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

0 5 10 15 20 25 30

N
um

be
r O

f N
od

es

Level

Address Tree
Full Tree

1

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

0 5 10 15 20 25 30

N
um

be
r O

f N
od

es

Level

Address Tree
Full Tree

(a) NLANR IP Address Trace (b) Tier-1 ISP IP Header Trace

Figure 2. Shape of Address Trees

16 bits are more important for personal privacy than the
most significant 16 bits. Similarly, the ridge in figure 3(f) is
centered around the 12-bit line.

The Tier-1 ISP trace contains many more distinct ad-
dresses than the NLANR trace does, the simulation on the
Tier-1 ISP trace, however, exhibits similar trends. Figures
of the simulation results are reported in [17], but are omit-
ted here due to space limitations. These figures show that
the U curve drops faster and the F ridge spreads wider up
along y-axis than they do in figure 3. This suggests that the
Tier-1 ISP trace is not as resistant to semantic attacks as the
NLANR trace is.

Effect of Compromising Greedily-Generated Addresses
A surprising result is that a greedy algorithm, which
chooses at each step an address that causes the greatest
single-step reduction in U or C value, actually generates
the optimal sequence of compromised addresses. That is,
for any N > 0, a sequence of N addresses generated by
the greedy algorithm cause the maximum reduction in U
(or C) among all sets of N compromised addresses. Since
the formal formulation of the greedy algorithm and its opti-
mality proof is very involved, we omit it here due to space
limitations. They are presented in full length in [17].

Figure 5 shows simulation results demonstrating the ef-
fect of an attack on the Tier-1 ISP trace as a function of

the number of addresses compromised and assuming the at-
tacker can choose these addresses to minimize U .

In figure 5, we see that for the U and C measures, the ef-
fect of compromising some number of addresses randomly
is similar to the effect of compromising an optimally cho-
sen set of addresses. For this trace, this seems to indicate
that compromising addresses at random is a good means of
attacking prefix-preserving anonymization.

5.3 Results on Two Specific Attacks

As mentioned earlier, we have chosen to characterize at-
tacks by the number and property of the addresses they re-
veal. We have consider randomly-chosen and optimally-
chosen addresses. We now consider what happens when
the set of addresses have properties that derive from a spe-
cific attack. We consider two types of attacks that have been
mentioned in the literature [5]: frequency analysis and DNS
server tracing.

Frequency Analysis: IP addresses of popular sites can
be inferred from their high frequency of occurrence in an
anonymized trace. Figure 4(a) shows the frequency that dif-
ferent addresses occur in the Tier-1 ISP trace. Addresses are
sorted by their frequency of occurrence from left to right.
Figure 4(b) magnifies the portion of 4(a) for the 300 most
frequent addresses. These figures show that only a small

7

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000 40000 60000 80000 100000 120000 140000

U
 a

n
d
 C

 C
o
u
n
ts

 (
u
n
it=

1
0
0
0
)

Number of Compromised Addresses

U
C

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000

U
 (

u
n
it=

1
0
0
0
)

U

1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070

0 500 1000 1500 2000 2500 3000

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C

2400
2600
2800
3000
3200
3400
3600
3800
4000
4200

0 50 100 150 200 250 300

U
 (

u
n
it=

1
0
0
0
)

U

1061
1062
1063
1064
1065
1066
1067
1068

0 50 100 150 200 250 300

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C

(a) (b) (c)

0
20000

40000
60000

80000
100000

120000

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
20000
40000
60000
80000

100000
120000
140000

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
5000

10000
15000
20000
25000
30000
35000
40000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
5000

10000
15000
20000
25000
30000
35000
40000

Fi

(d) (e) (f)

Figure 3. Measurement of U,C and F after attacks on the NLANR trace resulting in randomly chosen
compromised addresses. Figures (a),(b) and (c) are measurements of U and C; (b) and (c) magnify
(a) at the portion of x range 0 to 3000 and 0 to 300, respectively. Figures (d), (e) and (f) are the
measurements of F; (e) and (f) magnify (d) at the portion of x range 1 to 3000 and 1 to 300, respectively.

1

32

1024

32768

1.04858e+06

3.35544e+07

1 32 1024 32768 1.04858e+063.35544e+07

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

 (
lo

g
s
c
a

le
)

Ranks of Addresses (logscale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

50 100 150 200 250 300

N
u

m
b

e
r

o
f

O
c
c
u

rr
e

n
c
e

Ranks of Addresses

24000
26000
28000
30000
32000
34000
36000
38000
40000
42000
44000
46000

0 50 100 150 200 250 300

U
 (

u
n

it
=

1
0

0
0

)

U random
U most frequent

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

u
n

it
=

1
0

0
0

)

Number of Compromised Addresses

C random
C most frequent

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000
300000
350000
400000

Fi

(a) (b) (c) (d)

Figure 4. Effect of Frequency Analysis Attack On Tier-1 ISP Trace

number of addresses (in the tens) are actually distinguish-
able from others by their frequency of occurrence.

In figures 4(c) and (d), we show the U, C and F val-
ues assuming the N most-frequently-occurring addresses
are compromised as N varies. Figure 4(c) shows that com-
promising the most frequent 300 addresses has the same ef-
fect on U as compromising about 40 randomly chosen ad-
dresses. Figure 4(d) shows that compromising frequently

occurring addresses has a more localized effect, that is, af-
fecting mainly the most significant bits. According to these
results, frequency analysis, by itself, does not appear to be
a serious threat to this Tier-1 ISP trace.

DNS Server Address Tracing: The IP addresses of
DNS servers may be inferred from the hierarchical rela-
tionship among them. Starting with a root DNS server, an
attacker can trace down the DNS server hierarchy based

8

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

on their protocol-defined relationship in the anonymized
trace, assuming the attacker has enough knowledge about
the DNS server hierarchy.6

Our simulations result on the Tier-1 ISP trace is surpris-
ing. In [17] we show that for the same number of com-
promised addresses the attacker can reveal more “bits” if
the addresses were chosen at random from the entire set of
addresses as opposed to the set of DNS server addresses.
In fact, compromising all 35,903 DNS server addresses is
equivalent to compromising a set of only approximately
3,500 random addresses. Our results suggest that, for this
trace, an attack that reveals DNS server addresses is per-
haps not as serious as one would expect and that in fact an
attack that can reveal much fewer random addresses would
be more effective.

5.4 Miscellaneous attacks

In addition to the frequency analysis and DNS tracing
attacks we discussed in the previous section, we also study
other types of attacks that may pose threats to our prefix-
preserving anonymization scheme. Note, however, that our
results here are preliminary and still a topic of further re-
search.

Active attacks: This type of attack also affect non-
prefix-preserving address anonymization schemes. In this
attack, an intruder simply injects some “probing packets”
into the network, and hopefully gets them recorded and
anonymized in the trace. Assume that the intruder keeps
a copy of the injected packets, he/she will be able to re-
cover bindings between unanonymized and anonymized ad-
dresses later when the trace is released. This type of at-
tack is very hard to counter, since it can be made highly
robust: the destination (victim) IP address can be encoded
into fields such as port numbers and packet length. Detec-
tion of this attack is also tricky since to a certain extent it
can be viewed as a covert channel problem [20]. Keeping
information such as when and where the trace will be gath-
ered secret seems to be the best defense against such attacks.
This, however, still can not thwart an intruder that performs
probing continuously over a long period of time.

Port scanning: Port scanning is the standard technique
for an intruder to identify an Internet host for potential
break-in. It does so by “scanning” a subnet for a specific
service (port number) that is vulnerable to intrusion. The IP
addresses to be scanned often advance in a step of 1 (i.e.,
A;A+1; A+2; :::). Though such an attack does not target
our anonymization process, it may still pose a serious threat.
That is, if the intruder recognizes port scan in the trace, and
if A0s anonymized version is compromised from the trace,
A + 1; A + 2; ::: will also be revealed. Fortunately, intru-
sion detection software (e.g., Snort [21]) for detecting port

6This assumption is quite questionable though. Not all DNS servers
allow listing of their downstream servers for security reasons. This makes
it difficult to get the topology of the DNS hierarchy and we have not seen
any such topology publicly available.

scanning is available. The unanonymized trace can be first
filtered by such software before being anonymized. We are
currently measuring the amount (percentage) of port scan-
ning traffic that is contained in our traces to understand the
effect of filtering such traffic from a trace.

Routing table inference: In some routing performance
research, trace data and a relevant routing table may need to
be released together. This can be done by anonymizing the
IP prefixes in the routing table using the same key as trace
anonymization. Note that prefix-preserving anonymization
can be applied to IP prefixes of any length. In this case, it
is very important that the plaintext routing table (also rout-
ing tables of “nearby” routers, which can be similar) to be
kept secret7. We also note that we only need to anonymize
and release the routing table entries that the traffic trace has
actually accessed, which will make it even harder for the
intruder to infer useful information from the anonymized
routing table. We experimented our 50 GB Tier-1 ISP trace,
and found that our trace matches only 2,988 out of 45,008
prefixes in the routing table that came with it.

6 Summary of Our Work

Our work mainly consists of two parts. In the first
part, we characterize the prefix-preserving IP address
anonymization using a canonical form, and propose a
new cryptography-based scheme. Unlike TCPdpriv, our
scheme is suitable for (consistent) parallel and distributed
anonymization of traffic traces. We prove rigorously that
our scheme is secure up to the level a prefix-preserving
scheme could possibly deliver. We implemented the scheme
and evaluated its performance on real traffic traces (10,000
packets per second using Rijndael). In the second part of
our work, we first propose a framework (including a set of
metrics) for evaluating the effect of attacks on anonymized
traces. Using this framework, we study the effect of two
well-known attacks, frequency analysis and DNS tracing,
on two real-world traffic traces. Finally, we formally char-
acterize the optimal fashion (greedy algorithm) in which
an attacker should compromise a subset of anonymized ad-
dresses. We show that compromising an optimal set of N
addresses is almost as effective as randomly compromising
N addresses.

References

[1] Tony McGregor, Hans-Werner Braun, and Jeff Brown,
“The NLANR network analysis infrastructure,” IEEE
Communications Magazine, vol. 38, no. 5, pp. 122–
128, May 2000.

[2] “The Internet traffic archive,” http://ita.ee.lbl.gov/,
Apr. 2000.

7Otherwise, it is straightforward for an intruder to infer the true identi-
fies of a large portion of IP prefixes by studying their length or common-
prefix relationship. In addition, routing tables of “nearby” routers should
also be kept secret, since they can be similar.

9

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

U
 a

n
d
 C

 (
u
n
it=

1
0
0
0
)

Number of Compromised Addresses

U random
U greedy

C random
C greedy

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000

U
 (

u
n
it=

1
0
0
0
)

U random
U greedy

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C random
C greedy

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300

U
 (

u
n
it=

1
0
0
0
)

U random
U greedy

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C random
C greedy

(a) (b) (c)

Figure 5. Measurement of U and C after attacks on the Tier-1 ISP trace resulting in U-optimal greedy
set of compromised addresses. Figure (a) compares compromising a random set of addresses with
compromising an optimal set of addresses, in terms of U and C measures; (b) and (c) magnify (a) at
the portion of x range 0 to 3000 and 0 to 300, respectively.

[3] B. Krishnamurthy and J. Wang, “On network-aware
clustering of web clients,” in Proc. ACM Sigcomm
2000, Sept. 2000, pp. 97–110.

[4] Greg Minshall, TCPdpriv Command Manual, 1996.

[5] T. Ylonen, “Thoughts on how to mount an attack on
tpcpdriv’s ”-a50” option ...,” in TCPpdpriv source dis-
tribution, 1996.

[6] J. Daemen and V. Rijmen, “AES proposal: Rijn-
dael,” Tech. Rep., Computer Security Resource Cen-
ter, National Institute of Standards and Technology,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf,
Feb 2001.

[7] Neuman and Ts’o, “Kerberos: An authentication
service for computer networks, from IEEE commu-
nications magazine, september, 1994,” in William
Stallings, Practical Cryptography for Data Internet-
works, IEEE Computer Society Press, 1996.

[8] R. Ganesan, “Yaksha: Augmenting kerberos with
public-key cryptography,” 1995.

[9] Michael K. Reiter, Matthew K. Franklin, John B.
Lacy, and Rebecca N. Wright, “The omega key man-
agement service,” in ACM Conference on Computer
and Communications Security, 1996, pp. 38–47.

[10] O. Goldreich, S. Goldwasser, and S. Micali, “How to
construct random functions,” Journal of the ACM, vol.
33, no. 4, pp. 792–807, Oct. 1986.

[11] M. Luby and C. Rackoff, “How to construct pseudo-
random permutations from pseudorandom functions,”
SIAM Journal on Computing, vol. 17, no. 2, pp. 373–
386, 1988.

[12] Mihir Bellare, Joe Kilian, and Phillip Rogaway, “The
Security of Cipher Block Chaining,” in Advances in

Cryptology - Crypto 94, Yvo G. Desmedt, Ed. 1994,
number 839, pp. 341–358, Springer Verlag.

[13] M. �A. Ruiz-S�anchez, E. W. Biersack, and W. Dab-
bous, “Survey and taxonomy of ip address lookup al-
gorithms,” IEEE Network, vol. 15, no. 2, pp. 8–23,
Mar/April, 2001.

[14] M. Bellare, “Practice-oriented provable-security,” in
First International Workshop on Information Secu-
rity(ISW97), Boston, Massachusetts, 1998, Springer-
Verlag, Lecture Notes in Computer Science No. 1396.

[15] S. Goldwasser and M. Bellare, “Lecture notes
on cryptography. available online from http://www-
cse.ucsd.edu/users/mihir/papers/gb.html,” .

[16] D. Stinson, Cryptography, Theory and Practice, CRC
Press, 1995.

[17] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “On the
design and performance of prefix-preserving ip traf-
fic trace anonymization,” Tech. Rep., GIT-CC-02-45,
College of Computing, Georgia Institute of Technol-
ogy, Aug. 2002.

[18] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repos-
itory at the wide project,” in Proceedings of USENIX
2000 Annual Technical Conference: FREENIX Track,
San Diego, CA, June 2000.

[19] NLANR, “File ’sdc-964451101.tstamp+plen+destip’
included with NLANR network traffic packet header
traces,” 2000.

[20] B. Lampson, “A note on the confinement problem,”
CACM, vol. 16, no. 10.

[21] “Snort, the open source network intrusion detection
system,” 2001.

10

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

