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ABSTRACT

Online social networks pose significant challenges to computer sci-
entists, physicists, and sociologists alike, for their massive size, fast
evolution, and uncharted potential for social computing. One par-
ticular problem that has interested us is community identification.
Many algorithms based on various metrics have been proposed for
identifying communities in networks [18, 24], but a few algorithms
scale to very large networks. Three recent community identifica-
tion algorithms, namely CNM [16], Wakita [59], and Louvain [10],
stand out for their scalability to a few millions of nodes. All of
them use modularity as the metric of optimization. However, all
three algorithms produce inconsistent communities every time the
input ordering of nodes to the algorithms changes.

We propose two quantitative metrics to represent the level of
consistency across multiple runs of an algorithm: pairwise mem-
bership probability and consistency. Based on these two metrics,
we propose a solution that improves the consistency without com-
promising the modularity. We demonstrate that our solution to use
pairwise membership probabilities as link weights generates con-
sistent communities within six or fewer cycles for most networks.
However, our iterative, pairwise membership reinforcing approach
does not deliver convergence for Flickr, Orkut, and Cyworld net-
works as well for the rest of the networks. Our approach is em-
pirically driven and is yet to be shown to produce consistent out-
put analytically. We leave further investigation into the topological
structure and its impact on the consistency as future work.

In order to evaluate the quality of clustering, we have looked at
3 of the 48 communities identified in the AS graph. Surprisingly,
they all have either hierarchical, geographical, or topological in-
terpretations to their groupings. Our preliminary evaluation of the
quality of communities is promising. We plan to conduct more
thorough evaluation of the communities and study network struc-
tures and their evolutions using our approach.
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1. INTRODUCTION

Online social networks pose significant challenges to computer
scientists, physicists, and sociologists alike, for their massive size,
fast evolution, and uncharted potential for social computing. Par-
tially crawled or site-wide captured, they provide an unprecedented
opportunity for researchers to study the network structures both
topologically and semantically. One particular problem that has
interested us is community identification. Opinion groups on an
online e-commerce site or on a newsgroup draw a boundary of
demarcation in terms of information flow and community identi-
fication algorithms can be applied to mine such groups in today’s
massive online social networks.

Community identification in a very large network has posed a
serious challenge to researchers. Community identification algo-
rithms for networks larger than a few thousands of nodes resort
to heuristics and approximation, as optimal grouping becomes in-
tractable. This in turn introduces inconsistency in grouping results
when the input order of nodes changes. As pointed out in [59], the
“existence of correspondence between communities” or the prob-
lem of consistency in identified communities is the next hurdle in
the study of community evolution.

In this work we investigate the inconsistency among identified
communities by existing three community identification algorithms:
Clauset-Newman-Moore (CNM) [16], Wakita [59], and Louvain [10].
These three algorithms use modularity as the metric of optimization
in a greedy manner. Using a diverse set of network topologies, we
show that all three algorithms produce inconsistent communities
every time the node ordering changes. The first contribution of this
work is to quantify the level of consistency across multiple runs of
an algorithm. Two metrics we introduce are pairwise membership
probability and consistency. The former quantifies the likelihood



of two nodes resulting in the same community, and the latter rep-
resents the global level of consistency of a network, derived from
pairwise membership probabilities. We compare 12 networks in
terms of the above two metrics and show that no one algorithm
outperforms the other two in all networks. However, most pairwise
membership probabilities are close to either 0 or 1 (that is, never
in the same community or always in the same community, respec-
tively).

Based on above observation, we propose a solution that improves
the consistency without compromising the modularity. The key
idea is to set the pairwise membership probability as the link weight
and find communities in the weighted network iteratively. We show
that both the modularity and the consistency converge for most net-
works. Resulting communities exhibit consistent grouping. How-
ever, our iterative, pairwise membership reinforcing approach does
not deliver convergence for Flickr, Orkut, and Cyworld networks
as well for the rest of the networks. Our approach is empirically
driven and is yet to be shown to produce consistent output analyt-
ically. We leave further investigation into the topological structure
and its impact on the consistency as future work.

We pick the AS graph and validate that identified communities
bear relevance to what we would consider a community in the Inter-
net AS topology. The evaluation is preliminary but reveals interest-
ing insights into the AS graph. Only with topological information,
our approach has identified ASes in the same geographical region
and further classified those with starkly different topological struc-
tures and connectivities. Also recursive application of our approach
to a giant community has exposed varying degrees of strong ties
between tier-1 ISPs and their customers. We believe our approach
is a valuable new tool in the study of network structures and their
evolutions.

The remainder of this paper is structured as follows. In Section 2
we compile related work. In Section 3 we describe various data
sets used in this work. In Section 4 we describe three community
identification algorithms: CNM, Wakita, and Louvain. Then, we
compare results obtained from the three community identification
algorithms and reveal the consistency problem of communities in
Section 5. We propose our solution and demonstrate how it reaches
consistency of 1 in most networks in Section 6. In Section 7 we
present in-depth inspection of identified communities. In Section 8
we conclude.

2. RELATED WORK

Understanding community structure in a complex network has
been an active area of research in sociology, physics, biology, and
computer science. In this section we review past and ongoing re-
search on this topic.

General background

Many complex networks have structural sub-organizations, called
communities or modules, that are subsets of nodes characterized
by having more internal connections than external connections be-
tween them [25, 46, 47]. These communities have been found to
correspond to building blocks or functional units of complex net-
works. For instance, groups in a social network might correspond
to social communities or social groups. Groups of webpages on
the World Wide Web are sets of webpages dealing with a similar
topic [22]. It is known that communities or modules correspond
to functional units or pathways in biological networks [29] and to
geological units in air transportation networks [27].

Communities are also important in understanding dynamics on
a complex network. They affect synchronization [8], epidemic
spreading [38], emergence of cooperation [40] in complex networks.

Communities have different structural statistics from the network
as a whole [28, 46]. To get deeper insight on network structure, we
should consider not only global network properties, such as degree
distribution, but also local properties, such as community structure.
Thus understanding community structure is one of key issues in
complex network research.

Groups in social networks

To sociologists social networks form “background” or “basis”
of social behaviors and activities. Social scientists have studied
interplay between structures and function of social networks and
found that community structure in social network affects informa-
tion transfer, cooperation, and communication patterns. They are
also interested in the meaning of communities as well as finding
communities. McMillan et al. proposed the concept of “sense of
community”, a “feeling that members [of a group] have of belong-
ing, a feeling that members matter to one another and to the group,
and a shared faith the members’ needs will be met through their
commitment to be together” [41]. This approach is useful in find-
ing the closest communities a user identifies with, but requires ad-
ditional information, such as physical location of residences [13] or
topic of blog posts [44, 52].

As online social networks grow rapidly, recent research focus on
groups in online social networks. Group formation [9], link pre-
diction [37], information diffusion [32], and group recommenda-
tion [56] are studied in this area. Recent research has led to empir-
ical investigation of group evolution in social networks [9, 51]. In-
stead of mining community structure, they start with well-defined
communities and analyze temporal patterns in their group evolu-
tion. Their approach minimizes error in tracking history of groups,
for groups are explicitly declared, not inferred or mined.

Community structure identification

Across many fields of computer science, various algorithms for
discovering communities and modules in networks have been pro-
posed: graph partitioning based on betweenness and similar mea-
sures by removing inter-community links [25, 53], cliques-based
approaches [19, 50], information theory [54], link-pattern based
approaches [39], random walks on networks [55], similarity among
partitions [30], and so on.

The quality of partitioned communities is often evaluated by
modularity, (), and maximizing modularity in a greedy manner is
one of the prevalent algorithms for community identification [15].
It is defined as:

Q=) (ei—ai) (1)

where e;; is the ratio of the number of links between nodes belong-
ing to community ¢ over all links and a; is the ratio of all links
that cross the boundary of community ¢ over all links. The value of
modularity ranges from -1 to 1. The value (Q = 0 implies that the
number of links within a community is no better than random. The
value (Q = 1 is the maximum, but in practice it never reaches 1.
Non-zero modularity values represent deviation from randomness,
and in practice it is found that a value above 0.3 is a good indicator
of significant community structure in a network.

Conductance is a similar measure, but with only a local inter-
pretation [15]. It measures the quality of the cut between a set of
nodes and the rest of the network [11]. Leskovec et al. investigate
the relation between the conductance and the size of partitions [35]
and report that communities larger than a few hundreds are likely to
decrease in quality represented by network community profile plot.

Unfortunately, exact modularity optimization is computationally
intractable in large networks. For this reason, most modularity op-



Network # of nodes # of links # of nodes in GCC | # of links in GCC | Avg. Degree | Link Density | Avg. C.C
Karate 34 78 34 (100%) 78 (100%) 4.6 | 0.14 0.57
C.Elegans 297 2,148 297  (100%) 2,148  (100%) 14.5 | 0.049 0.29

Protein 1,846 2,203 1,458 (78.9%) 1,948  (88.4%) 2.7 | 0.0018 0.071

BBS 7,410 103,462 7,339  (100%) 103,413  (100%) 28.2 | 0.0038 0.41
AS Graph 32,930 124,133 32,925 (100%) 124,131  (100%) 7.5 | 0.00023 0.38
Facebook 63,730 817,090 63,691  (99.5%) 816,886  (99.9%) 25.7 | 0.0004 0.22
WWWwW 325,729 1,090,108 325,729  (100%) 1,090,108  (100%) 6.7 | 0.000021 0.23
Wikipedia | 1,870,709 | 36,532,531 1,870,521  (99.9%) | 36,532,421 (99.9%) 39.1 | 0.000021 0.23
Flickr 2,302,924 | 22,838,276 | 2,173,369 (94.3%) | 22,729,227 (99.5%) 20.9 | 0.00001 0.18
Orkut 3,072,440 | 117,185,083 | 3,072,440 (100%) | 117,185,083 (100%) 76.3 | 0.000025 0.17
YouTube 3,223,588 9,376,594 | 3,216,082 (99.8%) 9,371,096  (99.9%) 5.8 | 0.000002 0.09
Cyworld | 11,537,961 | 177,566,730 | 11,506,431 (99.7%) | 177,548,838 (99.9%) 30.9 | 0.000003 0.16

Table 1: Basic statistics of 12 networks. GCC is the giant connected component, and Average C.C is the average clustering coefficient.

timization algorithms are approximations. Examples are greedy al-
gorithms [16], simulated annealing [26], and spectral methods [46].

Limitation of modularity

Nevertheless, modularity maximization methods (MMMs) are
usually effective and successful in identifying and uncovering com-
munity structure in networked systems, but these methods have
limitations.

First, modularity has a resolution limit. It means that MMMs
fail to identify communities smaller than a certain scale. Recently,
Fortunato and Barthélemy [23] show that this scale depends on the
network size and degree of interconnectedness of the communities.
Second, MMMs cannot identify overlapping and nested commu-
nity structure. MMM s find only non-overlapping communities, but
many real communities overlap. To resolve overlapping communi-
ties in networks, Palla et al. [50] suggest clique percolation meth-
ods (CPMs) and report that communities of different sizes follow
separate evolutionary paths.

Although these limitations exist, modularity-based methods are
the only known approaches to work on very large networks. Our
goal is to address the problem of consistent community identifica-
tion so that we could use modularity-based methods in the study of
network dynamics.

3. DATA SETS

We use a diverse set of networks for evaluation in this work.
These networks vary greatly in characteristics and in size from the
smallest of 34 nodes to the largest of 11 million. They include oft-
line and online social networks, an online bulletin board system,
a biological neural network, a protein interaction network, the In-
ternet Autonomous System (AS) graph, the Wikipedia link graph,
and World-Wide Web graphs. Below we give a brief description of
each data set in increasing order in the number of nodes.

Karate Club  The data set of Zachary’s Karate club is the social
network of friendships between 34 members of a Karate club at
a US university, compiled by Wayne Zachary [62]. Because of
a dispute in the Karate club, one of the coaches left the original
Karate club and formed a new club with about half of the members.
This is a rare data set that has recorded the community evolution
and has been widely used in social sciences and other fields.

C.Elegans  The Caenorhabditis Elegans (C.Elegans) is the most
primitive organism that shares many biological characteristics of

mammals. For this work, we discard the weight and direction of
the links and treat the network as undirected and without weight.

Protein Interaction Network In the protein interaction net-
work, each identifier represents protein in the protein interaction
network of yeast [31].

Bulletin Board System This data is from an online bulletin
board system (BBS), called Loco, that runs at KAIST in Korea [20].
The original network has 7435 nodes, but we eliminate 25 whose
degrees are zero.

AS Graph  We use the Internet AS-level topology created by
Oliveira et al. [49]. They publish daily snapshots of AS-level topol-
ogy, and we use the release from April 1st, 2009. The strength of
this data is that many backup links not observable from BGP rout-
ing tables are included. This is the data used in the study of AS
topology evolution in [48]. Their data consists of 3-tuples: two
AS numbers, and the relation between them. They use two types
of AS relations: peer-peer and customer-provider. We treat all re-
lations as undirected edges.

Facebook We use the Facebook user-to-user link dataset re-
leased by Viswanath er al. [58]. They collect data from Facebook
New Orleans networks. We treat all links as undirected.

World-Wide Web  In the data set of World Wide Web (WWW),
each identifier represents a web page within nd . edu domain [5].
Although we call it WWW, the set is not yet known to be represen-
tative of the real world wide web. A link corresponds to a hyper-text
link from a web page to another. We treat the graph as undirected
for our work.

Wikipedia  Wikipedia [61] is an online encyclopedia that any
user can add or edit. Mislove extracted the edit history of 826 days
(ending on April 6th, 2007) of the English Wikipedia and made
the data set publicly available [42]. For our work, we do not use
the timestamps, but only the pointers from a page to another. This
graph is similar to the WWW graph, but different in the sense that
all those pointers are within the Wikipedia domain.

Flickr  Flickr is a popular online photo-sharing service. Mislove
et al. crawled user-to-user links of Flickr [43]. We omit the times-
tamps and only use the links from a user to another. We treat the
graph as undirected.



Orkut  Orkut user-to-user link dataset is also released by Mis-
love et al. [43]. The average degree of Orkut network is much
higher than other networks. For our work we treat the links as
undirected.

YouTube  YouTube is the largest online video-sharing service.
This dataset is also from [43]. We treat the graph as undirected for
our work.

Cyworld  Cyworld [17] is the most popular online social net-
working service in South Korea [4]. A link in the Cyworld data set
represents an online friendship between two users. The data set is
from September 2005. Due to its size, the link density is the lowest
among the 12 networks.

Table 1 shows the basic statistics of the data sets. Average degree
is the average of all individual node degrees [60]. The average
node degree varies from 2.67 of the protein interaction network to
28.2 of the BBS, an order of magnitude different. Link density is
the ratio of links that actually exist against all possible links [60].
The link density has a wider range from 0.000003 of the WWW
graph to 0.14 of the Karate club, 5 orders of magnitude difference.
Clustering coefficient of a node is the ratio of existing links between
anode’s neighbors over all possible links between the neighbors. It
quantifies how closely a node’s neighbors are connected. Average
clustering coefficient is the average of all clustering coefficients of
nodes in the entire network. The average clustering coefficient is
the lowest in the protein interaction network, whereas values for
other networks fall in the range of 0.16 to 0.57. Not all nodes
may be reachable from other nodes in a network. For this work,
we only consider the giant connected component (GCC) of each
network. Later we show how these differences have an impact on
the modularity and consistency.

4. THE THREE ALGORITHMS

In this section we provide brief descriptions and distinguishing
features of the three community identification algorithms: CNM,
Wakita, and Louvain. All three algorithms have publicly available
source codes and we use them'.

CNM Algorithm

Newman and Girvan defined the modularity in [47] and pro-
posed a simple algorithm with the complexity of O(n?) for a sparse
network of n nodes. Newman proposed an improved algorithm
based on agglomerative hierarchical clustering and brought down
the complexity to O(n?) in [45]. Still the complexity was too high
for large networks. In [16] Clauset, Newman, and Moore proposed
a more efficient community identification algorithm (we call CNM)
that performs the same bottom-up greedy optimization to maximize
the modularity of communities as in [45], but uses balanced binary
trees and max heaps. The time complexity of CNM algorithm drops
to O(m - d -log n), that is, in logscale of the network size, where d
is the depth of balanced binary trees and m is the number of edges.

In Figure 1 we present the pseudocode for the CNM algorithm.
The CNM algorithm begins with each node as a separate commu-
nity in a network (line 4). Then the algorithm finds the pair of
communities with the global maximum AQ (line 7), calculated by

"http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
http://www.is.titech.ac.jp/~wakita/en/software/community-
analysis-software/

http://findcommunities.googlepages.com/

‘We modify the code of Louvain to support the network whose total

weight is greater than 252,

1: V: aset of vertices

2: E: aset of edges

3: G< (V,E)

4: C <= {{vitlvi € G(V)}
5: H: amax heap of AQ.,
6: while H is not empty do
7:  extract mazAQc, ., from H, where any ¢, ¢, € C

Cy

8 ifmazAQ.,,, <0 then
9: break
10:  end if

11: c: <= cpUcy

122 C<=C—cs—cy+ec:

13: N, < {ck|vm € ¢z, Un € Ck,emn € G(E)}

14:  forc, € N, do

15: AQep.e, < Q(G,C —cr —cz + (ecrUcz)) — Q(G,C)
16:  end for

17: end while

Figure 1: Pseudocode for the CNM algorithm

eij + ej; — 2a;a; = 2 (e;; — asaj), and merges the pair into one
community (lines 11-12) until maximum AQ is not positive any
more (lines 8-10). During the merging process, the algorithm up-
dates AQ values that correspond to any neighboring community of
the newly merged community (lines 13-16).

If there are ties for the maximum AQ in line 7, any pair of com-
munities can be selected. In most cases the input order of nodes to
the algorithm determines the outcome. The problem of consistency
in final outcome arises here and only worsens, as the network size
grows and more ties appear.

Wakita Algorithm

While the CNM improves upon the simple greedy algorithm with
sophisticated data structures, it is reported to have unbalanced growth
in certain communities. That is, the pair merged first tends to snow-
ball into a large community, until the community can no longer
grow in terms of modularity. Then another pair of single nodes
is formed and then snowballs to another large community. A few
very large communities emerge and then remaining nodes eventu-
ally merge into smaller communities. Wakita and Tsurumi use a
consolidation ratio that takes into account the community size and
induces balanced growth among communities [59]. This reduces
the complexity greatly and their algorithm is projected to scale up
to networks of 10 million nodes.

We omit the pseudocode for the Wakita algorithm, for it is iden-
tical to CNM except for line 7. In Wakita, line 7 is replaced by:

extract maxAQe, c, - min(|cz|/|cy|, |cy|/|cz]) )

It evaluates not only AQ but also a consolidation ratio, and prefers
communities of similar sizes to be merged. Thus, as in CNM, there
are ties for the maximum AQ in (2), and any pair of communities
can be selected. The problem of consistency persists.

Louvain Algorithm

Blondel et al. take the idea of consolidation one step further
and merge at every iteration all nodes and communities with those
that maximize AQ [10]. Their so called Louvain method improves
both the modularity and computational complexity greatly and is
the only known algorithm to be applicable to networks of more
than 10 million nodes.

Figure 2 shows the pseudocode for the Louvain algorithm. It
consists of two phases. In the first phase, it starts with single-node
communities (line 6) like the above two algorithms. Then it eval-



(a) Q=0.27318

(b) Q=0.38067

(c) Q=0.41979

Figure 3: [Best viewed in color] Visualization of inconsistent community identification in Karate network. Nodes of the same color
are contained in the same community, and node ordering is depicted as the number in the node

1: V: asetof vertices

2: E: asetof edges

3: W: aset of weights of edges, initialized to 1
4: G <= (V,E,W)

5: repeat

6: C < {{vi}lvi e G(V)}

7:  calculate current modularity Qcur

8: Qnew = chr

9: Quld ~ Qnew

10:  repeat

11: for v; € V do

12: QC’LLT ~ Qnew

13: remove v; from its current community

14: Ny, < {ck|vi € G(V),v; € cp,ei5 € G(E)}
15: find ¢z € N, that has mazAQ(y,},c, >0
16: insert v; into ¢,

17: end for

18: calculate new modularity Qrew

19:  until no membership change or Qnew = Qcur

20: V' < {C,‘|C,‘ c C}

21: E < {e¢j|Ve¢j ifv; € Ci,’Uj S C]-,andCi 7£ Cj}
22: W' <= {wij| Zwij,Veij if v; € C; and v; € C]‘}
23 G« (V,E, W)

24: until Qpew, = Qold

Figure 2: A pseudo code for the Louvain algorithm

uates AQ by moving one node from its original community to its
adjacent communities. The node is moved to the adjacent commu-
nity that maximizes AQ. If the maximum AQ is negative, the node
stays in its original community. This process is repeated for all
nodes and continues until no further improvement or no member-
ship change (line 10 to 18). In the second phase, the algorithm re-
builds the network with communities as nodes and sum of weights
between nodes as link weights, and returns to the first phase. In
Figure 2 ties in maximum AQ arise in line 15.

In this section we have presented pseudocode for CNM, Wakita,
and Louvain algorithms and illustrated the sources of inconsistency
in their designs.

5. QUANTIFYING CONSISTENCY

In this section we introduce two metrics to quantify the level
of consistency and compare the three algorithms against those two
metrics. As described in Section 4, three algorithms arbitrarily se-
lect one of ties in max AQ. In a typical implementation of an algo-
rithm a max heap is used to find the value of maxAQ in O(1). The
input order of nodes affects the construction of the heap and thus
determines the outcome of the selection. Therefore, we induce con-
sistency or the problem of inconsistency using multiple randomly
ordered data sets.

5.1 Performance of the 3 Algorithms

We have seen improvement in time complexity from CNM to
Wakita, and then to Louvain. In this section we analyze the run-
time of the 3 algorithms over the 12 networks. Runtime of some of
our networks have been reported in [10, 59, 34], but not of those
with tens of millions of nodes. We ran all evaluation on an In-
tel Xeon 2.5 GHz computer with L2 cache of 6 MB and main
memory of 16 GB, running Ubunto Linux v2.6.24. For networks
with fewer than 5, 000 nodes, all three algorithms return results al-
most immediately. Once the network size grows over 5, 000 nodes,
then CNM starts to slow down. When the number of nodes in-
creases to 325, 000, it slows down significantly. Beyond 325, 000
it took longer than 2 days and we halted the execution. We expected
Wakita to scale up to ten million nodes, as expressed in [59], but
it did not finish in 3 days. For a network of more than 10 million
nodes and 100 million links, Louvain is the only algorithm that pro-
duces output in our evaluation. Yet still, it takes tens of minutes to
compute Orkut and Cyworld.

We confirm previously reported performance of the algorithms
and use only the Louvain algorithm with the five largest networks
in this work.

5.2 Variance in Modularity

All three algorithms use the modularity as a metric of optimiza-
tion. However, they all produce different values of modularity for
the same network and even for the same network when the input
order of nodes changes. We use the Karate network as an example
to illustrate the inconsistency even in a small well-studied network.
Figure 3 shows identified communities in Karate network by the
Louvain algorithm under three different orderings of nodes. Al-
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Figure 4: Comparison of modularity

though the Karate network has a small number of 34 nodes, identi-
fied communities in Figure 3(a), (b), and (c) are quite different. In
Figure 3(a) there are 8 communities and the largest of them has only
9 nodes. Figure 3(b) splits the best known sociology study result of
two-group partitioning [62] further into 3. Alves has reported the
existence of the blue community (of the 5 nodes in the top right cor-
ner) in Figure 3(b) [7]. His algorithm is based on the effective tran-
sition matrix of random walks through the topology and his finding
is from a fixed ordered data set; he reports no other grouping re-
sults. Figure 3(c) splits the 3 communities in Figure 3(b) further
into 4, resulting in a larger modularity. This example demonstrates
that even for a small network, the input order plays a critical role

and results can be very different without much consistency between
them.

Here we evaluate which algorithm produces better modularity
and how variable the modularity is when the input order is per-
turbed. In order to quantify variance in modularity, we perturb the
input ordering and generate IV sets of the same data but with dif-
ferent input order. In Figure 4 we plot the cumulative distribution
functions (CDFs) of modularity obtained from CNM, Wakita, and
Louvain algorithms with N = 100 randomly ordered data sets.
In Figure 4(a) of the Karate club, CNM produces only one value
of 0.381 no matter what the input order is, whereas the values
obtained by Wakita and Louvain range from 0.406 to 0.419 and
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Figure 5: CDF of pairwise membership probability

from 0.273 to 0.420, respectively. In Figure 4(b) of C.Elegans,
CNM produces 0.369 of 55 data sets and 0.372 of 45 data sets, and
Wakita and Louvain produce values from 0.288 to 0.331 and from
0.319 to 0.403, respectively. In Figure 4(c) of the protein interac-
tion network, the range of values by CNM is narrower than that by
Louvain, but two overlap. The values of Wakita lag lower below
0.81. In the remaining Figures 4(d) to (g) Wakita produces lower
modularity than CNM and Louvain, and Louvain always performs
best. From Figure 4(h) to (1) Louvain produces modularity values
in ranges of vary widths from 0.014 to 0.027.

In all, Louvain produces highest modularity in all but for the
smallest Karate club. CNM shows the smallest variance in 11
networks, while CNM obtains the largest variance in AS graph.
Wakita is lowest in modularity and has the largest variance. Based
on the observations from Figure 4 we expect Louvain to have the
best consistency in terms of community membership across differ-
ent input data sets. Next we move on to verify our expectation.

5.3 Consistency in Community Membership

The number of ways to partition a graph grows far faster than
exponential to the number of nodes, and it is not surprising to see
modularity vary as the input order is perturbed. From a macro-
scopic view this is fine as long as the modularity varies not too
much. However, if we are interested in network analysis from a
nodal perspective, that is, identifying a community a node belongs
to, it does not make sense for the node to belong to a completely
different community every time the input order is perturbed. For
example, we have two snapshots of a growing network taken a year
apart. How has the community of a node grown in a year? If the
community identification algorithm is so sensitive to the order of
the input and produces completely different communities from a
node’s perspective, we cannot answer the question raised in the ex-
ample. Thus before we identify the community a node belongs
to, we should ask: how consistent is the community membership
across different input orders?
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Figure 6: Consistency (no data available by CNM and Wakita for Wikipedia and Cyworld)

Over N runs of an algorithm, each over a randomly ordered input
set, we quantify the likelihood of a pair of nodes resulting in the
same community as:

N
_, 0" (¢, ¢4
py = o= l0n0) N( ! 3

where

5" (ciy ;) = 1, if ¢; = ¢; in the nth dataset
e 0, otherwise

and v; and v; are nodes and c; and c; represent communities that v;
and v; belong to, respectively. We call this metric pairwise mem-
bership probability. The pairwise membership probability p;; rep-
resents the empirical probability that two nodes belong to the same
community across multiple runs of the same algorithm. We can
compute p;; for all possible pairs of nodes. However, for any spe-
cific 4, p;; is likely to be O for most of j due to the sparsity of
links in the network, and this tendency grows with the network
size. Therefore, we consider p;; only for those adjacent nodes; that
is, only between neighbors.

In Figure 5 we plot CDFs of the pairwise membership probabil-
ity. The pairwise membership probability of 1 means that the two
neighboring nodes always belong to the same community and the
pairwise membership probability of 0 means that the two never be-
long to the same community no matter what the input order is. The
larger the number of pairs whose empirical pairwise membership
probability is close to either O or 1 is (or the more parallel the CDF
plot is to the x-axis), the more consistent the identified communi-
ties are. In Figures 5(a), (c) and (g), of the Karate club, all three
algorithms produce pairwise membership probabilities of mostly
0’s and 1’s. For the remaining nine networks, Louvain produces
the most consistent outcome and, for (g) to (h), the only outcome.

In order to quantify network-wide community membership con-
sistency, we define a metric of consistency C for the entire network

as:
Z (pij — 0-5)2

(vi,vj)EE 1

= X
|E| (0.5)2

The consistency C weighs the pairwise membership probabilities
away from 0.5. The second term in (4) normalizes C from O to 1.

In case of communities detected by CNM algorithm in the Karate
club, 12.8% of the pairwise membership probabilities are 0 and the
rest of the pairs have 1, which means that nodes of a community
always belong to the same community over N runs: C = 1. In
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Figure 7: Inter-quartile plot of modularity (no = Louvain with-
out extra means for tie breaking; k = degree; ¢ = clustering
coefficient; knn = degree correlation; cen = betweenness cen-
trality; _d = in decreasing order)

Figure 6 we show the consistency from three algorithms. In case of
Karate club, C.Elegans, and protein interaction network, the CNM
has the highest consistency, whereas the consistency of Louvain is
the lowest. In case of BBS and AS graph, the Wakita algorithm has
the highest consistency among the three, whereas the consistency of
the CNM algorithm is the lowest. In the case of WWW, the consis-
tencies of CNM, Wakita, and Louvain algorithms are 0.956, 0.921,
and 0.955, respectively, all over 0.9. There is no one algorithm that
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Figure 8: Convergence of consistency

outperforms the other two in all networks and no consistent correla-
tion between the consistency and the topological characteristics of
a network, such as average degree, link density, and average clus-
tering coefficient.

6. CONSISTENT COMMUNITY IDENTIFI-
CATION

6.1 Reinforcing pairwise membership

The key observation from the previous section is none of the
three algorithms produce a better solution than the others in all
networks. However, a closer look at Figure 5 reveals that in all
networks far more than 50% of pairs have pairwise membership
probabilities either smaller than 0.2 or greater than 0.8. That is,
most pairings are “doomed”. Based on this observation, we devise
a consistency reinforcing mechanism as follows. After a cycle of N
runs, we calculate the pairwise membership probabilities and then
assign them as link weights. From the second cycle on, we use the
weighted network and continue until C reaches 0.999 or higher. In
a weighted network, an edge of a higher weight is placed within a
community, while an edge of a lower weight bridges communities.
Since we assign the pairwise membership probability to the weight
of the corresponding link, an edge of high pairwise membership
probability in prior cycle is more likely to be placed within a com-
munity in the next cycle. Therefore, links with higher weights are
reinforced through multiple cycles and eventually consistent com-
munities emerge.

Our approach has the effect of removing those links with pair-
wise membership probabilities of 0 in the next cycle and spreading
unit link weight between 0 and 1, thus reducing ties significantly
in calculating AQ. When there are ties, can we give preference
to nodes based on other metrics, such as degrees or betweenness
centrality? To assess the benefit of other metrics, if any, we order
nodes by the degree, clustering coefficient, degree correlation, and
betweenness centrality and compute modularity. Figure 7 plots the
inter-quartile of the modularity over 100 runs of the BBS network
and C.Elegans. The box presents the inter-quartile range, and the
red line in the box is median. The cross mark is an outlier beyond
+2.70. We omit the results from other networks, for we do not find
a clear dependency on one metric across all twelve networks. Even
if we employ all the metrics in tie breaking, we cannot eliminate
ties completely. In other words, no single topological characteristic
consistently stands out to work better than others in all networks.
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Figure 10: Comparison of community size distribution in 4 tri-
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Figure 11: Community size vs. Jaccard coefficient between two
trials of AS graph

‘We have looked at edge betweenness as well, and found no corre-
lation between edge betweenness and pairwise membership proba-
bility.

Our approach of reinforcing consistency in multiple cycles is ap-
plicable to any of the three algorithms. We include only the results
from the Louvain algorithm in this paper, for it is the fastest and
only one that scales up to billions of links.

Figure 8 demonstrates the convergence of consistency after six
cycles. In the first 6 networks consistency reaches 1 in 5 cycles, and
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Figure 9: Convergence of modularity (‘Un’ indicates modularity of unweighted network)

even in WWW and Wikipedia networks, it reaches over 0.999818
and 0.999905, respectively, whereas, for Orkut and Cyworld, C'
does not converge to 1. We discuss plausible reasons in Section 6.3.

In Figure 9 we show how the modularity converges over five cy-
cles. The figure has the inter-quartile box-plots of modularity of
the original unweighted network and next five cycles. In all cases
but for Flickr, Orkut, and Cyworld, the modularity converges al-
most to a single point after six cycles. Furthermore, it either falls
within the inter-quartile range of the original unweighted network,
and, if not, it is always above the inter-quartile range. That is, the
modularity after six cycles is higher. Figure 9 demonstrates that our
approach has no negative impact on modularity, and even improves
it in certain networks.

6.2 Agreement between trials

So far we have seen our solution of using pairwise membership
probabilities as link weights improve consistency greatly. In this

section we evaluate if communities from different trials come out
identical for the converged case. We turn our focus to individual
communities in two independent trials. A trial is M cycles of V
runs. The results in Figure 9 are from M = 6 cycles of N = 100
runs and demonstrate consistently converging modularity. Just to
confirm the converging trend, we have run another trial over all
networks and observed less than 0.001 difference in the final mod-
ularities of two trials.

We move on to the analysis of community size distributions. We
choose the AS graph for our evaluation and omit the others for lack
of space. Figure 10 plots the community size distribution from 4
trials. All 4 plots almost completely overlap and are very close
to each other. Only for small-sized communities (< 100) some
discrepancies between trials are observed. In order to see if the
communities are identical across trials, we calculate the maximum
Jaccard coefficient (the ratio of intersection to union of two com-
munities) of a community against all communities of another trial.
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Figure 12: [Best viewed in color] Change of pairwise membership probability

The Jaccard coefficient of 1 means that exactly the same commu-
nities are produced in both trials. We compare the Jaccard coeffi-
cients for all pairs of trials and find only between Trials 1 and 2 and
between Trials 1 and 3 there are 5 Jaccard coefficients below 0.95
and all other pairs of trials report Jaccard coefficients < 0.95. We
plot the Jaccard coefficients between Trials 1 and 2 in Figure 11.
Out of 48 communities, 3 communities have the Jaccard coefficient
higher than 0.99, and 45 communities have 1. Surprisingly, even a
community of 10, 608 nodes has the Jaccard coefficient of 1.

6.3 Discussion on non-converging cases

According to Figures 8 and 9, our iterative, pairwise member-
ship reinforcing approach does not deliver convergence for Flickr,
Orkut, and Cyworld networks as well for the rest of the networks.
To understand why our approach stops to perform for these large
networks, we first visualize the change in pairwise membership
probabilities through cycles. In Figure 10 we plot the pairwise
membership probability of one cycle on the z-axis and that of the
next cycle on the y-axis. We color the 100 by 100 grids according
to the number of links with the corresponding pairwise member-
ship probabilities in two consecutive cycles. In Figure 10 points
near the lower left corner represent those links of which end nodes
do not belong to the same community across two cycles. Those in
the upper right corner represent the links that remain in the same
community through two consecutive cycles. Thus the more points
are in the lower left and upper right corners, the more converging
the communities are. In the case of Facebook we see many points
in the center of the figure in the first two cycles. As the iteration
continues, except for a very small number of points almost all data
points converge either to (0,0) or (1, 1).

However, Orkut’s case is different. In the first 2 cycles, the
pairwise membership probabilities are spread more widely than in
Facebook (leftmost figure in Figure 10(b)). Even after 5 cycles the
communities do not converge (middle figure in Figure 10(b)). We
do not stop at the 5th cycle, but continue with 5 more cycles. Still,

the rightmost figure in Figure 10(b) is starkly different from that
in Figure 10(a). Flickr behaves similarly to Orkut. Even though
Cyworld shows slightly, if marginally, better convergence of con-
sistency in Figure 8, we report that when visualized Cyworld’s con-
sistency is actually worse than that of Orkut.

What are the common characteristics of Flickr, Orkut and Cy-
world that mark them apart from other networks? Orkut and Cy-
world are the two largest networks in terms of the number of links,
but Flickr is smaller than Wikipedia. The sheer size along is not a
factor. We consider two possible explanations. One is the number
of iterations per cycle. Our choice of N = 100 is to make sure that
we break ties in choosing maxAQ), for the pairwise membership
probability is used as the link weight in the next cycle. However,
the number of all possible community configurations grows faster
than exponentially and N = 100 might be not large enough to
break all possible ties. Increasing IV raises a practical concern,
as even the Louvain algorithm takes half an hour for one iteration
over Orkut or Cyworld. If we increase N ten times, then we need
months of computing resource instead of days.

The other explanation is the resolution limit in community de-
tection [23]. Modularity is defined as a sum of terms and has an
intrinsic trade-off between the number of communities and its max-
imum value. In [23] Fortunato and Barthélemy report that commu-
nities below a certain size may not be resolved and are grouped
into a larger loose community. The resolution limit is the thresh-
old community size, and is a function of the total number of links,
not nodes. The resolution limit points at the possibility of a sub-
set of nodes vacillating between small communities and one large
all-encompassing community. Leskovec et al. use conductance to
split a network into two and demonstrates that partitions beyond a
certain size may not be the best” [35]. Although the two papers
use different quantitative definitions of communities, they both ad-
dress the difficulties in interpreting the notion of cluster coherence
and its implication on community separability. Although their work
addresses communities with different measures, they both address
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Figure 13: [Best viewed in color] Visualization of AS communities

the difficulties in interpreting the notion of cluster coherence and
its implication on community separability.

Neither of the above two explanations is tenable at this point.
Our approach is empirically driven and is yet to be shown to pro-
duce consistent output analytically. We leave further investigation
into the topological structure and its impact on the consistency as
future work.

7. FIRST LOOK AT CONSISTENT COMMU-
NITIES

The ultimate goal of community identification is to study the
structural characteristics and group dynamics. However, the inter-
pretation of communities varies greatly from one field of science to
another. A community in a social network maps to people, while a
group in a molecular network charts a certain function performed
by the group of cells. In this section we present preliminary inter-
pretation of identified communities in Internet AS graph. As each
network requires domain knowledge for interpretation, we choose
the AS graph for evaluation of communities and leave the rest for
future work. This section is a sanity check to validate that identified
communities bear relevance to what we would consider a commu-
nity in a specific domain.

We first map the AS number to the AS name using [2] and then
to the AS type as Oliveira et al. propose in [49]. They define
four AS types: (1) tier-1 if AS has no provider; (2) large ISP if
the size of the AS customer tree > 50; (3) small ISP if 5 < AS
customer tree < 50; and (4) stub if AS customer tree < 5. Previ-
ous work on Internet topology has focused on node characteristics,
such as degree, and link characteristics, such as connectivity and
liveness [6, 12, 14, 21, 36, 48]. Krishnamurthy ef al. have looked
at intermediate-level clustering of routers and hosts [33]. Our in-
vestigation of consistent communities differs in that we focus on
communities of ASes rather than topological characterization or
topology growth models.

Trial 1 in Section 6.2 produces 48 communities from the AS
graph. Out of 48 communities, we choose to investigate the follow-
ing 3 communities in detail: the largest community, a geographi-

cally concentrated community, and a star-shaped community?.

“We make the complete list of identified communities available on-
line via http://an.kaist.ac.kr/traces/IMC2009-kwak.html

Let us first look at the largest community (we label it L). It
contains 10,630 or 32.3% of all ASes. There are 5 tier-1 ASes,
34 large ISPs, 248 small ISPs, 10, 230 stub ASes, and 114 of un-
known type. The 5 tier-1 ASes are MCI, Level3, AT&T WorldNet,
Sprint, and Qwest. The largest community also includes 9 of top
10 ASes listed in AS ranking page of CAIDA [1]. CAIDA’s top
10 and Oliveira’s tier-1 ASes share MCI, Level3, AT&T World-
Net, Sprint, Qwest, and GBLX; NTT America and Savvis appear
only on Oliveira’s and Cogent, AT&T Internet Services, tw telecom
holdings, and XO Communications only on CAIDA’s.

To investigate the structure of the L community in detail, we
reapply our approach to the L community. We obtain 33 commu-
nities whose sizes vary from 9 to 1, 537. We plot the largest one in
Figure 13(a). The color of a node changes from red to blue as the
degree decreases. The size of a node is proportional to the degree in
log-scale. The three big red circles are MCI Communications Ser-
vices (ASN=701), AT&T WorldNet Services (ASN = 7018), and
Sprint (ASN = 1239). Interestingly, they all belong to the same
community, the largest with 1,537 nodes. The remaining 2 tier-1
ASes fall into different communities, and so do the remaining 6
from the CAIDA’s top 10 list.

The layers of strongly connected tier-1 ASes at the core and other
tier-1 ASes remind us of the Internet Jellyfish model [57]. Commu-
nities of our approach bears semblance to the shells and legs of the
jellyfish model. We leave in-depth mapping of our communities to
the jellyfish model for future work.

Next, we draw a community of geographically concentrated ASes
in Figure 13(b). For easy interpretation of geographical informa-
tion of ASes, we choose the community with top Korean ISPs.
This community has 658 ASes, including 5 large ISPs, 11 small
ISPs, 640 stub ASes, and 2 ASes of unknown type. The red circles
are Korea Telecom (ASN = 4766), Dacom (ASN = 3786), and Ha-
naro (ASN = 9318). They are the top three ISPs in Korea. Using
RIPE Database Search [3], we verify whether the other ASes are
in Korea. Surprisingly, 97.4% of ASes in this community are in
Korea. This community shows that it is possible to find geograph-
ically concentrated ASes from the AS topology by our community
identification algorithm.

Third, we plot a star-shaped community in Figure 13(c). All leaf
ASes connect only to the hub AS and no other. They are single-
homed stub ASes. The relation between the hub and leaf ASes is



provider-customer, and the hub is a small ISP in Ukraine. One no-
table observation is that in this community of a star topology there
is no peer-peer relation. As in the case of the Korean AS commu-
nity, all the ASes in this community are in Ukraine. The hub AS has
one more link to NetAssist AS (ASN = 29632) outside the commu-
nity. Most major ISPs in Ukraine, such as DATAGROUP (ASN =
21219, degree = 281), TOPNet (ASN =21011), Ukraine Academic
and Research Network (ASN = 3255), UKRTelnet Ukraine (ASN
= 6849), actually belong to another community of size 1, 194.

Though our analysis of consistent communities in this section is
preliminary, it has revealed interesting insights into the AS graph.
Only with topological information, our approach has identified ASes
in the same geographical region and further classified those with
starkly different topological structures and connectivities. Also re-
cursive application of our approach to a giant community has ex-
posed varying degrees of strong ties between tier-1 ISPs and their
customers. Our approach offers a new tool in the study of network
structures and their evolutions.

8. CONCLUSION

In this work we have investigated the problem of consisntency
among identified communities by existing community identifica-
tion algorithms: CNM [16], Wakita [59], and Louvain [10]. Using
a diverse set of network topologies, we have shown that all three
algorithms produce inconsistent communities every time the input
node ordering changes. We introduce two metrics of consistency
for this work: pairwise membership probability and consistency.
The former quantifies the likelihood of two nodes resulting in the
same community, and the latter represents the global level of con-
sistency of a network, derived from pairwise membership proba-
bilities. We have compared twelve networks in terms of the above
two metrics and shown that no one algorithm outperforms the other
two in all networks. However, most pairwise membership proba-
bilities are close to either O or 1 (that is, never in the same com-
munity or always in the same community, respectively). Based on
this observation, we have proposed a solution that improves the
consistency without compromising the modularity. The key idea is
to set the pairwise membership probability as the link weight and
find communities in the weighted network iteratively. We demon-
strate that our solution to use pairwise membership probabilities as
link weights generates consistent communities within six or fewer
cycles for most networks. The final modularity falls within the
inter-quartile range of a cycle of the original unweighted network
or sometimes even slightly better. Resulting communities exhibit
consistent grouping through multiple trials and their size distribu-
tions almost identical.

We have also examined identified communities in the AS graph.
ASes in some communities are geographically close, even though
the topological structure bears no information about geographic lo-
cations. Also recursive application of our approach to a giant com-
munity that contains 10,630 or 32.3% of all ASes has exposed
varying degrees of strong ties between tier-1 ISPs and their cus-
tomers.

Our solution does not lead to converging modularity and consis-
tent communities in a small number of networks. So far we have
not found topological characteristics that mark these networks apart
from other networks, complicating our effort to improve the cur-
rent solution. We plan to investigate network-specific topological
idiosyncracies for their impact on modularity and eventually com-
munity identification.

Consistency in identified communities is a step towards improv-
ing the quality of the identified communities. Our work is the first

to address the issue of consistency. Our approach offers a new tool
in the study of network structures and their evolutions.
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