
An Educational Networking Framework
for Full Layer Implementation and Testing

Keunhong Lee, Joongi Kim, Sue Moon
Department of Computer Science, KAIST

{khlee, joongi}@an.kaist.ac.kr, sbmoon@kaist.edu

ABSTRACT

We present the KENSv2 (KAIST Educational Network
System) framework for network protocol implementation.
The framework is event-driven to guarantee deterministic
behaviour and reproducibility, which in turn delivers ease of
debugging and evaluation. Our framework consists of four
components: the event generator, the virtual host, the TCP
driver and the IP driver. The two drivers are what students
have to implement, and we offer to the students the drivers
in the binary format for paired testing and debugging. We
have developed a test suite that covers three categories of
test cases: specification, paired, and logic tests. The frame-
work logs packet transmissions in the PCAP format to allow
use of widely available packet analysis tools. Those tools
help inspecting logical behaviour of student solutions, such
as congestion control. We have designed five step-by-step
assignments and evaluated student submissions. With our
automated test suite, we have cut down the number of TAs
by half for the doubled class size from the previous semester,
in total of 3 TAs and 49 students. We plan to continue us-
ing KENSv2 in our undergraduate networking course and
expand the test suite.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Net-
work Protocols—Protocol verification; D.2.5 [Software En-
gineering]: Testing and Debugging—Testing tools; K.3.2
[Computers and Education]: Computer and Informa-
tion Science Education—Computer science education, self-
assessment

General Terms

Design; Verification

Keywords

Educational Networking Framework; Full Layer Implemen-
tation; Automated Test Suite; Network protocols; TCP; IP
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright c© 2015 ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677304.

1 Introduction
In our computer science discipline, hands-on projects chal-

lenge students to build systems they learn in class. These
projects have always been an integral part of our curricula.
Kurose and Ross supplement their textbook on computer
networking with Wireshark1 labs and programming assign-
ments for network applications [1]. Wireshark labs help
students to grasp quickly the workings of today’s Internet
via packet trace analysis without writing code. MYSOCK/
STCP2 have been used in undergraduate networking courses
for students to implement the socket API and a simplified
TCP connection mechanism to work over simulated packet
losses and reordering. Clack [2] provides modular network
stack implementations including TCP, and students observe
TCP congestions in a graphical way. The popular net-
work simulation tool, ns23, has accumulated an extensive
set of protocol implementations in the past two decades,
but its primary goal is to examine the protocol performance
against other competing traffic rather than to provide ab-
stractions for learning and implementation. While ns2 oper-
ates strictly in a simulated environment, emulab4 and ONL
(Open Network Laboratory) [3] offer an emulated network-
ing environment with ease of access and configurability. VNS
[4] and its successor Mininet [5, 6] have empowered research-
ers with a container-based emulation environment that close-
ly matches the performance of a real testbed with high fi-
delity.

For a complete learning experience, students should be
able to implement and test the full protocol stack in realis-
tic settings but focus on core networking features only. The
assignment should avoid including extra burdens such as ker-
nel programming or concurrency management. It is a com-
mon method to punch-hole a set of functions in educational
frameworks for systems and let the students fill them as as-
signments. While it gives the instructor the power to choose
at will features for programming assignments, it burdens the
students with understanding of the entire framework and in-
teraction of their own code with the rest of the framework.
However, this punch-hole approach alone is not suitable for
network protocols because of their paired and asynchronous
nature—an implementation of a network protocol cannot
operate and be tested without a counterpart. Thus an ed-
ucational framework for network protocols should be able

1http://www.wireshark.org/
2http://www.stanford.edu/class/cs244a/hw3/hw3.html
3http://www.isi.edu/nsnam/ns/
4http://www.emulab.net

663

http://www.wireshark.org/
http://www.stanford.edu/class/cs244a/hw3/hw3.html
http://www.isi.edu/nsnam/ns/
http://www.emulab.net

Student’s TCP Driver

Student’s IP Driver

KENS Event Generator

Packet Event

Packet Event

Network Events

PCAP Log

Adversary TCP Driver

Adversary IP Driver

Packet Event

Packet Event

Network Events

PCAP Log

System Call Event

KENS Virtual Host KENS Virtual Host

System Call Event

Figure 1: Overview structure of KENSv2 framework

to launch multiple instances of different protocol implemen-
tations for paired testing, in addition to punch-holed func-
tions for individual implementations. The framework needs
to work as a demonstration of protocol abstractions instead
of a simple code template. Moreover, asynchronous execu-
tions over multiple hosts make the system unpredictable.
The framework should be deterministic to ease tracking, de-
bugging, and evaluation of students’ solutions.

In this work we present KENSv2 (KAIST Educational
Network System), a framework for students to implement
TCP, IP, and routing protocols, and test against adversary
implementations. Our framework is event-driven for deter-
ministic behaviour and reproducibility. We have designed
KENSv2, implemented it and have used it in an undergrad-
uate computer networking course. In Section 2 we elaborate
on our design decisions and in Section 3 present the frame-
work overview. In Section 4 we describe our assignments,
and in Section 5 evaluation results. We summarize our ex-
perience and lay out future work in Section 6.

2 Design Decisions
KENSv2 is an educational framework, and our design de-

cisions are differ from that of general-purpose frameworks.

2.1 Adversary Implementation

A unique requirement of an educational framework for
network programming is the need for adversary implemen-
tation. Most functionalities in network protocols are not
one-sided but require a responding counterpart. For a stu-
dent to have a working implementation of connect(), s/he
must have a matching implementation of accept(). We
provide these counterparts to allow students to use them
for running their code under development. Since this is an
educational framework, we should not expose the reference
solution. Thus, the counterparts are in the binary format to
hide the source code, while providing the required function-
ality.

Another motivation for adversary implementation is de-
coupling of the test code and implementation code for Test-
driven development (TDD).

For example in Pintos [7], testing thread functionalities,
running threads and checking the execution order are all in-
dependent from context switching and scheduling and can
be performed in separate units. The source code of the test-
ing suite is available with the framework and is independent
of the source code being tested. On the contrary, the test-
ing suite of network protocols follows the protocol logic and
are not independent from the target implementation. The
source code for the network logic should not be exposed to
the students, but testing logic itself should be available to
students.

2.2 Event-Driven Framework

Reproducibility is critical for an educational framework
since students should have a consistent view on how things
work [6]. Like other network simulation tools such as ns2,
our framework offers a deterministic, reproducible environ-
ment that make evaluation straightforward.

To achieve this goal KENSv2 provides an event-driven
programming model for layers and a discrete virtual clock.
The event-driven model simplifies execution of multiple lay-
ers and multiple instances of layer implementation by multi-
plexing them in a single process. To avoid function calls that
cross multiple layers from indefinitely blocking other events,
we split a blocking call into two parts, raise and completion,
to simulate asynchronous function calls. The virtual clock
allows insertion of arbitrary network delay and losses while
we run the simulation. We constrain all layer modules to
register callback functions for network events. The event
generator provides inputs from their upper/lower layers and
and the timing information through the registered callback
functions.

To deploy KENSv2 on real netweorks, it needs to adapt
with existing userspace packet IO schemes such as netmap

664

struct kens_tcp_driver_t
{
 //system call mapping
 void (*startup)(kens_system_lib*);
 void (*shutdown)(kens_tcp_driver*);

 my_context (*open)(kens_tcp_driver*, int*);
 void (*close)(kens_tcp_driver*, my_context,int*);
 bool (*bind)(kens_tcp_driver*, my_context,
 const struct sockaddr *, socklen_t, int*);
 bool (*listen)(kens_tcp_driver*, my_context, int, int*);
 bool (*connect)(kens_tcp_driver*, my_context,
 const struct sockaddr *, socklen_t, int*);
 bool (*accept)(kens_tcp_driver*, my_context, int*);
 bool (*getsockname)(kens_tcp_driver*, my_context,
 struct sockaddr *, socklen_t *, int*);
 bool (*getpeername)(kens_tcp_driver*, my_context,
 struct sockaddr *, socklen_t *, int*);

 void (*timer)(kens_tcp_driver*, my_context, int);

 //automatically called by ip layer
 void (*ip_dispatch_tcp)(kens_tcp_driver*,
 struct in_addr, struct in_addr, const void *, size_t);

 //application link
 int (*app_dispatch_tcp)(kens_tcp_driver*, my_context,
 const void*, size_t);
};

Figure 2: Function prototypes of the KENSv2 TCP
driver

[8], psio [9], and Intel DPDK (Data-plane Development
Kit) [10]. The challenge here is to combine our event-driven
scheduler with the polling loops used in modern userspace
packet IO libraries for high-performance. We plane to add
an adaptor that runs in polling mode and translates input
packets to packet events.

3 KENSv2 Framework
3.1 Framework Overview

Our KENSv2 framework consists of the following four
components: an event generator, virtual hosts, IP drivers,
and TCP drivers. Figure 1 show the overall architecture of
KENSv2. We have implemented our framework in C.

KENSv2 Virtual Host acts as an application layer to
TCP and as the combined data link and physical layer to
IP. The virtual host encapsulates all the interfaces that the
student’s code has with the framework. It is also capable of
logging all network events in the PCAP5 format. Students
can easily visualize and evaluate the log by using Wireshark6

or other packet analysis tools. This approach is also used in
[11]. Like Web100[12], the virtual host pumps system call
events to its TCP driver.

KENSv2 Event Generator feeds events to the virtual
hosts. It functions both as a virtual application and the un-
derlying network. It keeps track of a virtual clock and drives
the simulation according to it. As the underlying network,
it introduces network latency and packet drops. As a virtual
application, it initiates system call events towards the TCP
layer and they propagate through the TCP and IP layers
back to the event generator. By running multiple virtual
hosts on top of a single event generator, the framework can

5MIME type vnd.tcpdump.pcap. See http://www.
iana.org/assignments/media-types/application/vnd.
tcpdump.pcap
6https://www.wireshark.org/

typedef struct
{
 //access the local routing table
 uint32_t (*ip_host_address)(struct in_addr target);

 //send packet to lower layer
 int (*tcp_dispatch_ip)(struct in_addr src_addr,
 struct in_addr dest_addr, void * data, size_t data_size);
 //send packet to upper layer
 int (*tcp_dispatch_app)(my_context handle,
 const void* data, size_t data_size);

 //wake up sleeping 'accept' system call
 bool (*tcp_passive_open)(my_context server_handle,
 my_context new_handle);
 //wake up sleeping 'connect' system call
 bool (*tcp_active_open)(my_context handle);

 //current time in milliseconds
 int (*tcp_get_mtime)();

 bool (*tcp_register_timer)(my_context context, int mtime);
 void (*tcp_unregister_timer)(my_context context);
 //disconnect tcp-app linkage for a socket hanle
 void (*tcp_shutdown_app)(my_context handle);

}kens_system_lib;

Figure 3: System APIs. It shows the case for TCP
drivers, but the IP drivers share the similar interface
prefixed with “ip_” instead.

Linux KENS

int fd = socket(...);

bind(fd, ...);

my_context* ctx = my_open(...);

my_bind(ctx, ...);

Figure 4: Context mapping between file descriptors
and KENSv2 TCP contexts

simulate a network of multiple hosts running a set of appli-
cations.

Students’ TCP and IP Drivers are the part that stu-
dents should actually implement. The structure of driver is
shown in Figure 2.

Adversary Drivers are binary counterparts for debugging
and testing.

3.2 Network Driver Abstraction

Our driver abstraction provides a unified interface for net-
work layer implementations. Drivers cannot access the sys-
tem or other drivers directly but only through a set of API
and utility functions. The API hides environment-specific
details from the drivers; students can run their implementa-
tions on both real and testing environments seamlessly with-
out modifying their codes. The TCP and IP drivers share
the similar abstraction with minor differences depending on
what their lower/upper layers are.

System API. Drivers have access to the system resources
via the following functions. Figure 3 illustrates them:

• retrieve system clock

• register/unregister timer

• wake up blocked applications

• send data to lower/upper network layer

Network/System Event Callbacks. To interact with
other layers and run timed operations, each driver registers
a few callback functions:

• initialization/destruction event of the driver

• system call requests

665

http://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap
http://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap
http://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap
https://www.wireshark.org/

• timer events

• data arrival from lower/upper network layer

Students receive a skeleton of a driver (either TCP or IP)
and are assigned to fill the above callback functions. They
can use the system API as they need.

To reduce the burden of managing unique numbering for
process IDs and file descriptors, we also offer a context map-
ping scheme as shown in Figure 4, which internally maps
each context data to individual TCP socket. The frame-
work translates each file descriptor into the pointer of its
context data. Drivers use this information to distinguish
each socket from the attached context data.

3.3 Test Suite

At the moment we have implemented only the TCP test
suite and are working on the IP test suite. The test suite
consists of three parts: specification tests, pairing tests, and
logic tests.

Specification test validates the input parameters and re-
turn values of the standard system calls. We check the re-
turn value and the content of the buffer. For example, the
test checks if the TCP driver detects a collision with an ex-
isting port number when calling a bind() system call. The
specification test also needs to repeat with different orders
of system call events and packet events as the execution re-
sult depends on their execution order. To achieve that, our
test suite enumerates every possible ordering. For example,
Figure 5 illustrates two different cases for accept(): “re-
turning already established connection” and “blocking until
new connection has arrived”.

Pairing test ensures that the code behaves in a match-
ing manner with its counterpart because the communication
may fail regardless of the specification test result. It tests if
the data transmitted from one side is received correctly at
the other side. For example, even though write() system
call reports back the success of a transmission, packets may
have been dropped or unrecognized in the lower layers or in
read() implementation running at the destination virtual
host due to bugs.

Logic test validates if the implementation conforms with
the runtime requirements such as congestion control. Nei-
ther specification nor pairing tests covers correctness of con-
text-dependent runtime behaviour because they are black-
box approaches confirming the execution results statically.
For example, unsolicited or duplicate ACKs are dependent
to the TCP protocol states and not straightforward to val-
idate. We leverage the existing analysis tools for the logic
test, which has reduced our development effort greatly at the
same time making our framework easy to maintain. The
framework generates the packet traces in the widely-used
PCAP format. We use Wireshark since it provides context-
dependent protocol checks such as advanced TCP filters ver-
ifying SEQ/ACK numbers. For simpler tests, more options
are available—such as Packetdrill [13] providing packet-level
assertions to verify constant fields and checksums.

4 KENSv2 Assignments
We are currently using the prototype of KENSv2 frame-

work in a computer networks course for undergraduate stu-
dents as a programming assignment. The goal of the as-
signment is to help the students to understand how actual
network layers operate by requiring them to participate in
TCP implementation.

Starting testListen

 CUnit - A unit testing framework for C - Version 2.1-2
 http://cunit.sourceforge.net/

Suite: testListen
 Test: __testListen_Accept_Before_Connect ...passed
 Test: __testListen_Accept_After_Connect ...passed
 Test: __testListen_Accept_Multiple ...passed
 Test: __testListen_Multiple_Interfaces ...passed

Run Summary: Type Total Ran Passed Failed Inactive
 suites 1 1 n/a 0 0
 tests 4 4 4 0 0
 asserts 145 145 145 0 n/a

Elapsed time = 0.000 seconds
testListen: progress = 4/4

Figure 5: Example result of a successful test result

What we expect the students to do are as follows:

• Manipulating protocol headers properly

• Demultiplexing flows from the lower layer

• Multiplexing flows from the upper layer

• Context management for demultiplexed flows

• Implementing functions in protocol specification

What we do NOT want the students to deal with are as
follows:

• Hassles of managing multiple threads and protecting
critical regions

• Issues on connecting their network stacks with other pre-
built network stacks

• Reinventing the wheel such as commonly used data struc-
tures (e.g. lists, maps)

• Platform compatibility issues

In the assignment we split the TCP layer implementation
into a series of small tasks (sub-assignment) as shown in the
following class schedule:

• (Week 1) Assigning own TCP context for each socket
creation request

• (Week 2) Implementing basic accept/connect protocol

• (Week 3,4) Data transfer on reliable network connection

• (Week 5) Data transfer and connection establishment
on unreliable network connection

• (Week 6) Implementing basic AIMD congestion algo-
rithm

We gave students two weeks to submit each sub-assignment,
and they had a week off between each assignment. As we did
not provide any skeleton codes except the abstract function
interfaces, students had to design their own TCP context
data structure, demultiplexer, reorder window, etc. We left
the implementation details to the students’ discretion.

In spring 2014, 49 students participated in the project,
supervised by 3 TAs. Students worked in pairs as a team to
work on the assignments together. This was an incremental
assignment and the final submissions consist of hundreds to
2K lines of code.

666

Starting testBind

 CUnit - A unit testing framework for C - Version 2.1-2
 http://cunit.sourceforge.net/

Suite: testBind
 Test: __testBind_Simple ...passed
 Test: __testBind_GetSockName ...passed
 Test: __testBind_DoubleBind ...passed
 Test: __testBind_OverlapPort ...passed
 Test: __testBind_OverlapClosed ...passed
 Test: __testBind_DifferentIP_SamePort ...FAILED
 1. testbind.c:244 - CU_ASSERT_EQUAL(err,0)
 2. testbind.c:245 - CU_ASSERT_TRUE(ret)
 Test: __testBind_SameIP_DifferentPort ...passed

Run Summary: Type Total Ran Passed Failed Inactive
 suites 1 1 n/a 0 0
 tests 7 7 6 1 0
 asserts 60 60 58 2 n/a

Elapsed time = 0.000 seconds
testBind: progress = 6/7

Figure 6: Example result of a failed test result

Figure 7: Transmission rate over reliable network

5 Evaluation of Students’ Submissions
We had 49 students working in pair and collected 23 sub-

missions for each assignment. In this section, we introduce
how we evaluate the assignments using our framework.

5.1 Correctness of system call functionality

Each system call implementation is required to satisfy
some functionalities. Some examples of functionalities we
want to verify include:

• Finding existing TCP context with port number/IP ad-
dress

• Checking port number collision while binding address to
socket

• Returning correct socket address on getsockname

• Backlog management

Our test suite contains assert statements for system calls
on various execution environment. We have placed virtual
system events to cover every TCP state transitions. Also,
we have tests that covers some complicated situations. Fig-
ure 6 contains corner cases of bind() system call. We
verify the functionalities by checking whether the students’
implementation passes all asserts.

5.2 Correctness of Data Transfer

The core function of TCP is to send data from one to
the other. We verify it by comparing the sent data and
the received data byte-by-byte. This transmission request is
handled by a virtual user application that generates proper
system call requests (socket-connect-write-close).

Figure 8: Transmission rate over reliable network
(0.1% drop rate)

Fast Retransmission Timeout

Figure 9: Bytes on flight over unreliable network
(0.1% drop rate)

5.3 Correctness of Header Manipulation

We want to check the correctness of TCP checksum, whether
a user has sent unseen ACK number, etc. Wireshark pro-
vides most verification algorithms we want. After the test
application is finished, we analyze the generated PCAP log
via Wireshark and check whether an implementation vio-
lates the TCP protocol compatibility.

5.4 Reliable Transfer over Unreliable Network

KENSv2 physical layer supports artificial drop/reorder/
corruption of packets. The framework allows the verifica-
tion of TCP behaviours on unreliable connections by simply
turning on the unreliable transfer mode. Our Week 5 assign-
ment is simply announced as passing same test suite while
unreliable transfer mode is turned on. Students can observe
the realistic dynamics of Bytes Per Second under these con-
ditions.

5.5 Implementing congestion control and its veri-
fication

Students can implement any TCP congestion control al-
gorithms as KENSv2 provides the virtual system clock and
registration of timers. We offered students to implement
TCP Reno algorithm7. Without any packet drops, the net-
work I/O throughput looks flat like Figure 7. If there are
some packet drops, the network throughput looks like Fig-
ure 8. However, this does not imply that AIMD congestion
control is working. To distinguish AIMD congestion con-
trol from multiple retransmissions (though both supports
reliable transfers over unreliable network), we have applied
advanced TCP filters from Wireshark. These filters compute
and compare SEQ/ACK numbers and allows us to determine
how many bytes are on flight and not ACKed. Figure 9 il-
lustrates the halved window size on fast-retransmission and
the slow start phase on timeout. Wireshark filters also de-
tect fast-retransmissions and timeouts. Currently we have
manually observe the macroscopic behaviour of congestion
control because the desired windows size is implementation-
specific, for example, depends on the initial window size and
round-up/round-down choices. However, we plan to adopt
TShark (Terminal version of Wireshark) to automate pars-
ing the filter results and evaluation of the logic test.

7http://tools.ietf.org/html/rfc6582

667

http://tools.ietf.org/html/rfc6582

0

1

2

3

4

5

6

700 800 900 1000 1100 1200 1300 1400 1500 1600
Lines of Code

N
um

be
r o

f S
ub

m
iss

io
ns

Figure 10: LoC distribution for the final project

5.6 Diversity of Submissions

Until the end of the semester, we had 23 submissions on
total. Figure 10 shows the distribution of LoC8 of all sub-
missions. The shortest solution had 692 LoC and the longest
had 1588 LoC. This high variation of LoC shows that our
abstraction is general and embraces diverse solutions by stu-
dents, i.e., freedom of design. Also, the amount of assign-
ment is about a thousand LoC, which is suitable for a single
semester assignment.

6 Summary and Future Work
KENSv2 is an educational framework for transport and

network layer implementation that supports:

• Realistic Protocol Implementation

• Incremental Development

• Automated Test Suite

• Packet Level Inspection

Our improvements are based on eight years of accumulated
lab experiences. In Spring 2014 we are already experiencing
benefits from the improvements. We could run TCP imple-
menting assignments over 49 students having 3 TAs for man-
agement, which is halved from the previous semester. We
plan to release the refactored framework as an open-source
software and encourage other universities to try KENSv2 by
this year.

We have the following extension ideas for KENSv2. The
first is to extend our automated test suite to cover the IP
layer. The current version has a functional interference
and a reference implementation of the IP layer including
packet fragmentation and reassembly, but lacks automated
test suites. The second is to redesign KENSv2’s data link
layer as a generalized adaptor that can receive/transmit
packets from/to various underlying packet IO schemes, such
as userspace packet IO libraries or the native Linux kernel.
The third is to add an IPv6 layer. We expect that IPv6 will
become a standard suite for educational frameworks as its
adoption is going to accelerate in the near future and the
IPv4 address space is being exhausted. Finally, though our
system call abstraction for blocking calls can represent the
blocking behaviour of both connect() and accept(), the
test code itself does not look like real-world TCP applica-
tions. We have a plan to extend our system call abstraction
layer to cover every system call with a unified interface.

8The number of lines are measured with CLOC. See http:
//cloc.sourceforge.net/

7 Acknowledgements
KENSv2 is based on KENS (KAIST Educational Net-

work System) developed by Junehwa Song and his students
(http://nclab.kaist.ac.kr/kens). The original motiva-
tion and design of KENS has been a great inspiration. We
are grateful to Yejin Park and Junhyun Shim for their help
with writing. This work was supported by the Basic Science
Research Program by the National Research Foundation of
Korea (NRF) of MSIP (2014R1A2A1A01007580).

8 References
[1] James F Kurose and Keith W Ross. Computer networking:

a top-down approach featuring the Internet. Pearson
Education India, 2005.

[2] Dan Wendlandt, Martin Casado, Paul Tarjan, and Nick
McKeown. The clack graphical router: visualizing network
software. In Proceedings of the 2006 ACM symposium on
Software visualization, pages 7–15. ACM, 2006.

[3] John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan
Turner, Charlie Wiseman, and Ken Wong. The open
network laboratory. In ACM SIGCSE Bulletin. ACM, 2006.

[4] Martin Casado and Nick McKeown. The virtual network
system. In ACM SIGCSE Bulletin. ACM, 2005.

[5] Bob Lantz, Brandon Heller, and Nick McKeown. A network
in a laptop: rapid prototyping for software-defined
networks. In ACM SIGCOMM HotNets. ACM, 2010.

[6] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,
Bob Lantz, and Nick McKeown. Reproducible network
experiments using container-based emulation. In
Proceedings of the 8th international conference on
Emerging networking experiments and technologies, pages
253–264. ACM, 2012.

[7] Ben Pfaff, Anthony Romano, and Godmar Back. The
pintos instructional operating system kernel. In ACM
SIGCSE Bulletin, volume 41, pages 453–457. ACM, 2009.

[8] Luigi Rizzo. netmap: A Novel Framework for Fast Packet
I/O. In USENIX ATC, 2012.

[9] PacketShader I/O Engine.
github.com/PacketShader/Packet-IO-Engine.

[10] Intel DPDK (Data Plane Development Kit).
https://dpdk.org.

[11] Marko Lackovic, Robert Inkret, and Miljenko Mikuc. An
approach to education oriented tcp simulation. In SoftCOM
2002: international conference on software,
telecommunications and computer networks, pages 181–185,
2002.

[12] Matt Mathis, John Heffner, and Raghu Reddy. Web100:
extended tcp instrumentation for research, education and
diagnosis. ACM SIGCOMM Computer Communication
Review, 33(3):69–79, 2003.

[13] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt
Mathis, Barath Raghavan, Nandita Dukkipati,
Hsiao-keng Jerry Chu, Andreas Terzis, and Tom Herbert.
packetdrill: Scriptable network stack testing, from sockets
to packets. In USENIX Annual Technical Conference,
pages 213–218, 2013.

668

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://nclab.kaist.ac.kr/kens
github.com/PacketShader/Packet-IO-Engine
https://dpdk.org

	Introduction
	Design Decisions
	Adversary Implementation
	Event-Driven Framework

	KENSv2 Framework
	Framework Overview
	Network Driver Abstraction
	Test Suite

	KENSv2 Assignments
	Evaluation of Students' Submissions
	Correctness of system call functionality
	Correctness of Data Transfer
	Correctness of Header Manipulation
	Reliable Transfer over Unreliable Network
	Implementing congestion control and its verification
	Diversity of Submissions

	Summary and Future Work
	Acknowledgements
	References

