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Abstract

We present MBone experiments that validate an end-to-
end measurement technique we call MINC, for Multi-
cast Inference of Network Characteristics. MINC exploits
the performance correlation experienced by multicast re-
ceivers to infer loss rates and other attributes of internal
links in a multicast tree. MINC has two important advan-
tages in the Internet context: it does not rely on network
collaboration and it scales to very large measurements.
In previous work, we laid the foundation for MINC us-
ing rigorous statistical analysis and packet-level simula-
tion. Here, we further validate MINC by comparing the
loss rates on internal MBone tunnels as inferred using our
technique and as measured using the mtrace tool. In-
ferred values closely matched directly measured values —
differences were usually well below 1%, never above 3%,
while loss rates varied between 0 and 35%.

1 Introduction

As the Internet grows in size and diversity, its internal per-
formance becomes harder to measure. Any one organi-
zation has administrative access to only a small fraction
of the network’s internal nodes, while commercial factors
often prevent organizations from sharing internal perfor-
mance data. End-to-end measurements using unicast traf-
fic do not rely on administrative privileges, but it is dif-
ficult to infer link-level performance from them and they
require large amounts of traffic to cover multiple paths.
There is a need for practical and efficient procedures that
can take an internal snapshot of a significant portion of the
network.

We have developed a measurement technique that ad-
dresses these problems. Multicast Inference of Network
Characteristics (MINC) uses end-to-end multicast traffic
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as measurement probes. It exploits the inherent correla-
tion in performance observed by multicast receivers to
infer the loss rate and other attributes of paths between
branch points in a multicast routing tree. These mea-
surements do not rely on administrative access to internal
nodes since they are done between end hosts. In addition,
they scale to large networks because of the bandwidth ef-
ficiency of multicast traffic.

The intuition behind packet loss inference is that the
event that a packet has reached a given internal node in
the tree can be inferred from the packet’s arrival at one or
more receivers descended from that node. Conditioning
on this event, we can determine the probability of success-
ful transmission to and beyond the given node. Consider,
for example, a simple multicast tree with a root node (the
source), two leaf nodes (the left and right receivers), a
link from the source to a branch point (the shared link),
and a link from the branch point to each of the receivers
(the left and right links). The source sends a stream of
sequenced multicast packet through the tree to the two re-
ceivers. If a packet reaches either receiver, we can infer
that the packet reached the branch point. Thus the ratio
of the number of packets that reach both receivers to the
number that reached only the right receiver gives an esti-
mate of the probability of successful transmission on the
left link. The probability of successful transmission on
the other links can be found by similar reasoning.

It is not immediately clear whether this technique ap-
plies to more than just binary trees or whether it enjoys de-
sirable statistical properties. In previous work [1], we ex-
tended this technique to general trees and showed that the
estimate is consistent, that is, it converges to the true loss
rates as the number of probes grows. More specifically,
we developed a Maximum Likelihood Estimator (MLE)
for internal loss rates in a general tree assuming indepen-
dent losses across links and across probes. We derived the
MLE’s rate of convergence and established its robustness
with respect to certain violations of the independence as-
sumption. We also validated these analytical results using
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the ns simulator [11]. We give a brief account of these
results in Section 2.2.

In that earlier work [1] we also explored the accuracy
of our packet loss estimation under a variety of network
conditions. Again using ns simulations, we evaluated the
error between inferred and actual loss rates as we varied
the network topology, propagation delay, packet drop pol-
icy, background traffic mix, and probe traffic type. We
found that, in all cases, MINC accurately inferred the per-
link loss rates of multicast probe traffic.

In this paper, we further validate MINC through exper-
iments under real network conditions. We used a collec-
tion of end hosts connected to the MBone, the multicast-
capable subset of the Internet [6]. We chose one host as
the source of multicast probes and used the rest as re-
ceivers. We then made two types of measurements si-
multaneously: end-to-end loss measurements between the
source and each receiver, and direct loss measurements
at every internal node of the multicast tree. Finally, we
ran our inference algorithm on the results of the end-to-
end measurements, and compared the inferred loss rates
to the directly measured loss rates. Across all our exper-
iments, the inferred values closely matched the directly
measured values. The differences between the two were
usually well below 1%, never above 3%, while loss rates
varied between O and 35%. Furthermore, the inference
algorithm converged well within 2-minute, 1,200-probe
measurement intervals.

The rest of this paper is organized as follows: Sec-
tion 2 describes our experimental methodology; Section
3 presents our experimental results; Section 4 discusses
our ongoing work; Section 5 surveys related work; and
Section 6 offers some conclusions.

2 Experimental Methodology

During each of our MBone experiments, we had a source
send a stream of sequenced packets to a collection of re-
ceivers while we made two types of measurement at each
receiver. At the source, we used our mgen traffic gener-
ation tool to send one 40-byte packet every 100 millisec-
onds to a previously reserved multicast group. The result-
ing traffic stream placed less than 4 Kbps of load on any
one MBone link. At each receiver, we ran the mtrace [9]
and mbat [8] tools to gather statistics about traffic on this
multicast group. Below we describe our use of mtrace
and mbat in more detail.

2.1 Direct measurements

mtrace traces the reverse path from a multicast source to
areceiver. It runs at the receiver and issues trace queries
that travel hop-by-hop up the multicast tree towards the
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Figure 1: Multicast routing tree during our representative
MBone experiment.

source. Each router along the path responds to these
queries with information about traffic on the specified
multicast group as seen by that router, including counts
of incoming and outgoing packets. mtrace calculates
packet losses on a link by comparing the packet counts
returned by the two routers at either end of the link.

In each of our experiments, we collected mtrace
statistics for consecutive two-minute intervals over the
course of one hour. We ran a separate instance of mt race
for each interval. Each mtrace run issued a trace query
at the beginning of the interval and another query at the
end. We thus measured link-level loss rates for all thirty
intervals in one hour. These intervals are not exactly
two minutes long due to delays incurred in collecting re-
sponses to the queries. We recorded timestamps for the
actual beginning and end of each mt race run to help syn-
chronize our inference calculations to these direct mea-
surements.

We chose to measure two-minute intervals based on our
previous experience with MINC. Our simulations have
shown that the statistical inference algorithm at the heart
of MINC converges to true loss rates after roughly 1,000
observations [1]. Given the 100 milliseconds between
probes in our MBone experiments, two minutes allow for
1,200 probes between measurements.

It is important to note that mt race does not scale to
measurements of large multicast groups if used in parallel
from all receivers as we describe here. Parallel mtrace
queries come together as they travel up the tree. Enough
such queries will overload routers and links with measure-
ment traffic. We used mtrace in this way only to vali-
date MINC on relatively small multicast groups before we
move on to use MINC alone on larger groups.

2.2 Statistical inference

MINC works on logical multicast trees. A logical tree is
one where all nodes, except the root and the leaves, have at
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least two children. A physical tree can be converted into a
logical tree by deleting all nodes, other than the root, that
have only one child and then collapsing the links accord-
ingly. A link in a logical tree may thus represent multiple
physical links. This conversion is necessary because infer-
ence based on correlation among receivers cannot distin-
guish between two physical links unless these links lead
to two different receivers. Henceforth when we speak of
trees we will be speaking of logical trees.

2.2.1 Inference algorithm

Our model for loss on a multicast tree assumes that packet
loss is independent across different links of the tree, and
independent between different probes. With these as-
sumptions, the loss model is specified by associating a
probability o, with each node % in the tree. « is the prob-
ability that a packet is transmitted successfully across the
link terminating at node &, given that it reaches the parent
node p(k) of k.

When a probe is transmitted from the source, we can
record the outcome as the set of receivers the probe
reached. The loss inference algorithm is based on proba-
bilistic analysis that allows us to express the «y, directly
in terms of the expected frequencies of such outcomes.
More precisely, for each node & let v, denote the proba-
bility of the outcome that a given packet reaches at least
one receiver that has k as an ancestor in the tree. Let Ay
denote the probability that a given packet reaches the node
k‘, i.e., Ak = QpQk, Ak, . . . Q. where kl, kg, ey km is
the chain of m adjacent nodes leading back from node £ to
the root of the tree. Then it can be shown that Ay satisfies

(1=/Ax) = J] (0 =7/4%)

Jjec(k)

€]

where the product is taken over all nodes j in c(k), the
set of children of the node k. It was shown in [1] that un-
der generic conditions the Ay can be recovered uniquely
through (1) if the 4 are known. The oy can in turn be
recovered since a = Ag /Ap(k). Generally, finding A
requires numerical root-finding for (1). In the special case
of a node k with two offspring j and 5/, (1) can be solved
explicitly:

A, = Vi

= 2
it — Ve

Suppose that in place of the v in (1), we use the actual
frequencies 9 with which n probes reach at least one re-
ceiver with ancestor k. We denote the corresponding so-
lutions to (1) by A, and estimate the link probabilities by
ap = fl\k/fl\p(k). The calculation of the 55 is achieved
though a simple recursion as follows. Define new vari-
ables Y (7) as function of the measured outcomes of n
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probes by
.| 1 ifprobe i reaches node k
Yi(i) = { 0 otherwise )
if k is a leaf node, and
Yi(?) = max Y, (¢ 4
() = max (i) @
otherwise. Then
5= L3 ) 0
L = — )
= 2 k

We showed in [1] that the estimator ay, enjoys two use-
ful properties: (i) consistency: ay converges to the true
value o, almost surely as the number of probes n grows
to infinity, and (ii) asymptotic normality: the distribution
of the normalized difference \/n (@ — ay) converges to a
normal distribution as n grows to infinity. We also investi-
gated in [1] the effects of correlations that violate the inde-
pendent loss assumptions. Consistency is preserved under
a large class of temporal correlations, although conver-
gence of the estimates with n can be slower. Spatial cor-
relations perturb the estimate continuously, in that small
correlations lead to small inconsistencies. When losses on
sibling links are correlated the perturbation is a second-
order effect, in that the degree of inconsistency depends
not on the size of the correlations, but on the degree to
which they change across the tree.

Our earlier paper on MINC [1] contains a detailed de-
scription and analysis of the above inference algorithm,
including rules to handle special cases of the data in which
the generic conditions required for the existence of solu-
tions to (1) fail. In the interests of brevity, we omit these
details from this paper.

2.2.2 Inference calculations

We encoded our loss inference algorithm in a program
called infer. infer takes two inputs: a description
of the tree topology and a description of the end-to-end
losses experienced by each receiver. It produces as output
the estimated loss rates on every link in the tree.

We determined the tree topology by combining the
mtrace output from all the receivers. Along with packet
counts, mt race reports the domain name and IP address
of each router on the path from the source to a receiver.
We built a complete multicast tree by looking for com-
mon routers and branch points on the paths to all the re-
ceivers. The topology of the MBone is relatively static due
to that network’s current reliance on manually configured
[P-over-IP tunnels. These tunnels are themselves logical
links that may each contain multiple physical links. We
verified that the topology remained constant during our
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Figure 2: Inferred vs. measured loss rates on link between
UKy and GA over the course of one hour. The two sets of
loss rates agree closely over a wide range of values.

experiments by inspecting the path information we ob-
tained every two minutes from mtrace.

We measured end-to-end losses using the mbat tool.
mbat runs at a receiver, subscribes to a specified mul-
ticast group, and collects a trace of the incoming packet
stream, including the sequence number and arrival time
of each packet. We ran mbat at each receiver for the du-
ration of each experiment. At the conclusion of an experi-
ment, we transferred the mbat traces and mt race output
from all the receivers to a single location.

There we ran the loss inference algorithm on the same
two-minute intervals on which we collected mtrace
measurements. For each receiver, we used the timestamps
for the beginning and end of mt race measurements to
segment the mbat traces into corresponding two-minute
subtraces. Then we ran infer on each two-minute inter-
val and compared the inferred loss rates with the directly
measured loss rates. We discuss the results in the next
section.

3 Experimental Results

We performed a number of MBone experiments using dif-
ferent multicast sources and receivers, and thus different
multicast trees. Inferred loss rates agreed closely with
directly measured loss rates throughout our experiments.
Here we highlight results from a representative experi-
ment on August 26, 1998. Figure 1 shows the multicast
routing tree in effect during the experiment. The source
was at the U. of Kentucky and the receivers were at AT&T
Labs, U. of Massachusetts, Carnegie Mellon U., Georgia
Tech, U. of Southern California, U. of California at Berke-
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Figure 3: Inferred loss rates on the three links between
UKy and USC during one 2-minute, 1,200-probe mea-
surement interval. The inference algorithm converged
well before the measurement interval ended.

ley, and U. of Washington. The four branch routers were
in California, Georgia, Massachusetts, and New Jersey.

Figure 2 shows that inferred and directly measured loss
rates agreed closely despite a link experiencing a wide
range of loss rates over the course of a one-hour exper-
iment. Each short horizontal segment in the graph repre-
sents one two-minute, 1,200-probe measurement interval.
As shown, loss rates on the link between the U. of Ken-
tucky and Georgia varied between 4 and 30%. Neverthe-
less, differences between inferred and directly measured
loss rates remained below 1.5%. The highest difference
we observed across all links in all our experiments was
3%.

Figure 3 shows that the inference algorithm converged
quickly to the desired loss rates. Each inferred loss rate
reported in Figure 2 is the value calculated by infer at
the end of the corresponding 2-minute, 1,200-probe mea-
surement interval. However, infer outputs a loss rate
value for every probe. Figure 3 reports these intermediate
values for one representative measurement interval. As
shown, inferred loss rates stabilized well before the inter-
val ended.

In summary, our MBone experiments showed that in-
ferred and directly measured loss rates agreed closely un-
der a variety of real network conditions:

e Across a wide range of loss rates (4-30%) on the
same link.

o Across links with very low (< 1%) and very high (>
30%) loss rates.

e Across all links in a multicast tree regardless of their
position in the tree.
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covery and report internal loss rates through the use of References

mtrace. However, mtrace suffers from performance
and applicability problems in the context of large-scale
Internet measurements. First, as mentioned earlier in this
paper, mtrace needs to run once for each receiver in or-
der to cover a complete multicast tree. This behavior does
not scale well to large numbers of receivers. In contrast,
MINC covers the complete tree in a single pass. Sec-
ond, mtrace relies on multicast routers to respond to
explicit measurement queries. Although current routers
support these queries, Internet Service Providers (ISPs)
may choose to disable this feature since it gives anyone
access to detailed loss information about paths inside their
networks. In contrast, MINC does not rely on cooperation
from any network-internal elements.

6 Conclusions

We have presented experimental results that validate the
MINC approach to inferring link-level loss rates from
end-to-end multicast measurements. We compared loss
rates in MBone tunnels as inferred using our technique
and as measured by mtrace. Inferred values closely
matched directly measured values — differences were usu-
ally well below 1%, never above 3%, while loss rates var-
ied between 0 and 35%. In addition, our inference algo-
rithm quickly converged to the true loss rates — inferred
values stabilized well within 2-minute, 1,200-probe mea-
surement intervals.

We feel that MINC is an important new methodology
for network measurement, particularly Internet measure-
ment. It does not rely on network cooperation and it scales
to very large networks. MINC is firmly grounded in statis-
tical analysis that is backed up by packet-level simulations
and now experiments under real network conditions. We
are continuing to extend MINC along both analytical and
experimental fronts.

Further information on the MINC project, including a
longer version of this paper with additional experimen-
tal results, is available from http://www-net.cs.
umass.edu/minc.
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