
Estimation and Removal of Clock Skew from
Network Delay Measurements

Sue B. Moont, Paul Skellyt, Don Towsleyt

tDepartm@ of ComputerScience
Universityof Massachusetts

Amherst,MAO 1003

{sbmoon,towsley}@,cs.unrass.edu

,4bwract—Packetdelay and 10SStraces are frequently used by network
engineers, as well as network applications, to analyze network perfor-
mance. The clocks on the end-systemsused to measure the delays, how-
everj are not always synchronized, and this lack of synchronization reduces
the accuracy of these measurements. Therefor~ estimating and removing
relative skews and offsets from delay measurements between sender and
receiver clocks are critical to the accurate assessment and analysis of net-
work performance. In this paper we introduce a linear programming-based
algorithm to estimate the clock skew in network delay measurements and
compare it with three other algorithms. We show that our algorithm has
time complexity of O(N), leaves the delay after the skew removal positive,
and is robust in the sense that the error margin of the skew estimate is inde-
pendent of the magnitude of the skew. We use traces of real Internet delay
measurements to assess the algorithm, and compare its performance to that
of three other algorithms. Furthermore, we show through simulation that
our algorithm is unbiased, and that the sample variance of the skew esti-
mate is better (smaller) than existing algorithms.

Keywords— clock skew, clock ratio, end-to-end delay, delay measure-
ment.

L INTRODUCTtON

End-to-end delay and loss traces are frequently used in an-
alyzing network performance. The accuracy of such measure-
ments is important for several reasons. First, end-to-end mea-
surements may be the only way of measuring network perfor-
mance, especially when there is no provision inside the network
to provide end-systems with information about the current sta-
tus of the network. The current Internet has no mechanism for
providing feedback on network congestion to end-systems at the
1P layer, and neither does IPv6 [1]. Second, protocols and ap-
plications that behave adaptively at the end-system base their
control on observed network perfonmmce, and it is critical that
they obtain correct measurements.

Packet loss can be detected if a sender puts a sequence num-
ber on every packet it sends out, and the receiver sees a gap in
the sequence numbers of packets arriving within a reasonable
amount of time. For delay measurements, a sender needs to add
timestamps to packets for a receiver to gather delay information
[2]. Since the clocks at both end-systems are involved in mea-
suring delay, the synchronization of the two clocks becomes an
issue in the accuracy of delay measurement. The Network Time
Protocol(NTP) [3] is widely used in the Internet for clock syn-
chronization. It provides an accuracy of the order of millisec-
onds under reasonable circumstances. The accuracy, however,
is not guaranteed, and not all hosts on the Internet support it.

Packet Iosa and delay -e Cr=cid in understanding the perfor-
mance and reliability of the Internet. To provide unbiased and
quantitative measures of performance, there has been consider-

This researchwassupportedin part by funding from GTE Laboratories,Inc.,
andby the National ScienceFoundationunder GrantNo NCR-9508274.Any
opinions,fhrdmgs,andconckrslonsor recommendationsexpressedin this ma-
terial are thoseof the autQor(s)and do not neeessaxilyreflect the viewsof the
National ScienceFoundation.

*GTE Laboratories,Inc.
40 SylvanRoad

Waltham,MA 02254

pskelly@te.com

able effort to define one-way loss and delay metrics [4]. To ob-
tain an accurate measurement of one-way delay, errors and un-
certainties reIateci to clocks need to be accounted for. When two
clocks involved in the measurement run at different frequencies
(that is, have a clock skew), inaccuracies are introduced in the
measurement. In this paper we focus on filtering out the effects
of clock skew specifically in one-way delay measurements.

The rest of the paper is organized as follows. In Section II we
present a typical delay trace that motivated us to design a skew
estimation algorithm. In Section III we define the ter& needed
to describe clock behavior, and introduce the notation used in
the remainder of the paper. In Section IV we formalize the clock
synchronization problem between two hosts, and show how the
skew and offset affect the delay measurements. Then we list
several desirable properties expected of a skew estimation algo-
rithm. We irrtroduce our skew estimation al~orithm based on a
linear programming technique in Section V~and three existing
algorithms in Section VI. In Section VII we compare the four
algorithms presented in this paper with respect to three desir-
able properties, as well as their performance in measurements
and simulations. We conclude the paper in Section VIII.

II. MOTIVATION

Before we introduce the skew estimation algorithms, let us
first examine a sample of one-way delay measurements. This
sample, illustrated in Fig. 1, is taken from a trace described in
Section VII-D (Trace 1 in Table II). The x-axis is the sender
timestamp, and the y-axis is the delay calculated by subtract-
ing the sender timestamp from the receiver timestamp of each
packet. The measured delay lies in the range of31. 15 to 31.5
seconds. The measured delay is not the actual end-to-end de-
lay, but includes the clock offset between the two clocks plus
the end-to-end delay. Clock offset is the difference in time, and
skew is the difference in clock speed. We defer the formal defi-
nitions of offset and skew to Section 111.

3*.

31.4

* 3*.

%
J 3,,3

:= 31,

8 s, .2

31.

31. ! in
Receiver time staflmg at 650pm

Fig. 1. Trace1

In Fig. 1 the delay shows an increasing trend of about 100

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

milliseconds over the duration of 70 minutes at the receiver. It is
significant enough to distort perfommnce metrics such as the av-
erage and autocorrelation of end-to-end delay. While one might
imagine that this is due to increasing congestion and queueing
delay, it is unlikely as the minimum observed delay increases
over time. Instead, the linear increase in delay attests to a con-
stant speed difference between the sender and receiver clocks.

The end-to-end delay consists of transmission and propaga-
tion delays plus variable queueing delay. When all of the pack-
ets go through the same route to the receiver, they have the same
propagation delay, and, if they have the same size, the transmis-
sion delay also is the same. Even if the packets go through the
same route, and are of the same size, the packets experience dif-
ferent levels of queueing inside the network. This is what causes
the variability in the end-to-end delay.

Previous work by Paxson [5], [6] addresses problems in delay
measurements due to clock adjustments and rate mismatches. In
his work, Paxson uses forward and reverse path measurements
of delay between a pair of hosts to deal with clock synchro-
nization problems, such as relative offset and skew. Many ap-
plications, however, see only one-way delay, and still have to
deal with the clock synchronization problems in packet delay.
Unfortunately one-way measurements alone are not enough to
infer the clock offset, and we cannot distinguish the clock off-
set from the fixed portion of end-to-end delay. For example, in
the figure shown above, it is difficult to tell how much of the
31.15 seconds is due to the time difference between clocks and
the fixed transmission and propagation delay, without the avail-
ability of more information. Due to this lack of information in
one-way delay, we focus on the variable portion in one-way de-
lay measurements.

The variable queueing delay serves a very important role in
network and application design. Continuous-media applications
such as audio and video need to absorb the delay jitter perceived
at the receiver for smooth playout of the original stream [7],
[8], [9]. Determining the correct amount of buffering, and re-
constructing the original timing is cxucial to the performance of
continuous-media applications. The variable queueing delay is
also useful in monitoring the network performance at the edges
of the network; the transmission and propagation delay is tixed
per route, and does not convey any information about the dy-
namic changes inside the network when packets follow a fixed
route.

III. BACKGROUND

A. Clock terminology

In this section we introduce the terminology we use to de-
scribe clock behavior. A clock is a piecewise continuous fimc-
tion that is twice differentiable except on a finite set of points:

C: I?+R

where C’(t) E dC(t) /dt and C“(t)E cZ2C(t)/dt2 exist every-
where except for t e P c 7? where l.?’I is finite.

A “true” clock reports “true” time at any moment, and runs at
a constant rate. Let Ct denote the “true” clock; it is the identity
function given below,

Cj(t) =t and Pt =0

We use the following nomenclature from [3] and [10] to de-
scribe clock characteristics. Let C. and cb be two clocks:
● offset: the difference between the time reported by a clock

and the “true” time; the offset of Ca is (C.(t) – t). The offset
of the clock Ca relative to Cb at time t ~ O is Co (t) – Cb(t).

●

●

●

frequency: the rate at which the clock progresses. The fre-
quency at time tof C. is C:(t).
skew: the difference in the tiequencies of a clock and the
“true” clock. The skew of C. relative to Cb at time t is
(c:(t) - Cj(t)).
drift: The drift of clock C“, is C:’(t). The drifi of C. relative
toCb d time t > ()is (c~ft)– b!(t)).
Two clocks are said to be synchronized at a particular moment

if both the relative offset and skew are zero. When it is clear that
we refer to two clocks, neither of which is the true clock in our
discussion, we simply refer to relative offset and relative skew
as offset and skew, respectively.

It is sometimes convenient to compare the frequency ratio be-
tween two clocks instead of the skew. This is captured by the
following definition.
. clock ratio: the tlequency ratio between a clock and the

“true” clock; the ratio of C. is C’(a). The ratio of C. rel-
ative to cb at time t is C: (t)/C~(t).

Let C. and cb have constant frequencies, and Q and b be the
clock ratio and skew of cb relative to Ca, respectively. a =
C~/C~ and J = C; – C;. Then the relation between the clock
ratio and the skew is:

J=c; –c:=ac:–c; =(a–l)c: (1)

From now on, we assume that the sender and receiver clocks
have constant frequencies, and their skew and clock ratio are
constant over time; we use them interchangeably, and use (1)
whenever necessary to convert born one to the other.

B. llme duration consistent with a clock

In the previous section, we have defined a clock and terms
relevant to its behavior. In this section we look at how a time
duration is measured according to a clock. Let A (tl, tz, C.)
denote the time that has passed according to C. between tland
ttof the “true” clock. Since a clock is a piecewise continuous
fimction, we define the time duration as:

J
t2

A(tl, t2, Ca) a C;dt

=~:C:d:;~:C;dt+ ++~C:dt

where Pan (t~,t~) = {pI,pz,...,p~} and

tl<pl<p2 <”. .<pn<t2, l<i <n.

If Pan (tl, t2) = q5, then

I

t~

A(tl, t2, C.) = C:dt = Ca(t2) – Ca(tl) (2)
tl

When two clocks are not synchronized and, more specifically,
have different frequencies, time duration measured with one
clock will be different from the other. We say that a time du-
ration measured with a clock is consistent with any other clock
of the same frequency and any offset. If two clocks have a non-
zero skew, time measured on one clock will not be consistent
with the other clock.

We have modeled a clock as a piecewise continuous function
in order to take into account the restrictions of real clocks. The
resolution of a clock on a computer system is the smallest unit
by which the clock’s time is updated, and is greater than zero.
At best, a clock in a computer is a step function with increments

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

at every unit of its time resolution. We consider the time reports
by a real clock with a fixed minimum resolution as samples of
a continuous function at specific moments, and thus circumvent
the discretization effect of the real clock. Another problem a
real clock poses is the abrupt time adjushnent possible through
a time resetting system call, Some systems that do not run NTP
[3] have a very coarse-grain (in the order of hours) synchroniza-
tion mechanism in the cron table. The time adjustment in such
a case can be several orders of magnitude larger than the usual
increment of the clock resolution, and the time can even be set
backward. The piecewise nature of a clock function accommo-
dates the abrupt time adjustment.

When a delay measurement involves more than one clock, the
synchronization between those clocks has a tremendous impact
on the accuracy of the measurement. Let us consider a case of
measuring a packet delay between two hosts. The sender adds
a timestamp to a packet when it leaves the sender, and the re-
ceiver records the time the packet arrives at the receiver. When
the two host clocks are perfectly synchronized, the difference
between the two tirnestamps is the end-to-end network delay
experienced by that packet. If the clocks on the two hosts have a
non-zero offset, but no skew, the difference between two times-
tamps includes not only the end-to-end delay, but also the offset.
Given only a one-way measurement, we cannot distinguish the
offset from the measurement, unless we are given the network
delay, which is what we intended to measure in the first place.
If the clocks have a non-zero skew, not only is the end-to-end
delay measurement off by an amount equal to the offset, but it
also gradually increases or decreases over time depending on
whether the sender clock runs slower or faster than the receiver
clock.

In the following sections we formalize the clock synchroniza-
tion problem outlined above, and show how to remove the clock
skew in measurements.

IV. BAStCS OF A SKEW ESTIMATION ALGORITHM

In the previous section we have defined a clock, and what is
meant for a delay to be consistent with a clock. In this section
we discuss the estimation and removal of the effects of clock
skew in delay measurements. We first derive how much the
clock skew contributes to the measured end-to-end delay when
the skew is non-zero and constant. This derivation provides a
basis for the discussion of several desirable properties for skew
estimation algorithms.

A. Delay measured between two clocks

From Section IV-A, if the clock ratio between the sender and
receiver clocks is greater than or less than 1, network delays will
appear to become longer or shorter over the course of a measure-
ment period. The purpose of removing this effect of skew on the
delay measurements is to transform the delay measurements so
that they are consistent with a single clock. In our work, we
have chosen to make the delay measurements consistent with
the receiver clock. When there is no access at the receiver to
the “true” clock, the only clock the receiver has access to is its
own clock. It is thus natural to measure one-way delay accord-
ing to the receiver clock. For the simplicity of derivation, we
assume the receiver clock to be the true clock, i.e. C;(t) = 1
and a = (?;(t). However, this assumption does not lead to loss
of generahty; the same derivation leads to the delay consistent
with the receiver clock whether it is the “true” clock or not.

For different size packets, the clock skew may not be distin-
guishable from the delay trend, if any. For example, if the packet

size grows over time and the route fi-om the sender to the re-
ceiver is fixed, then the transmission delay gradually increases,
and it is hard to distinguish a skew from this delay trend. Thus
we assume all the packets have the same size.

Let us now introduce the terminology for clocks, timestamps,
and delays used in measurements.
●

●

●

●

●

●

●

al

C.: sender clock.
C,: receiver clock.
N: number of packets that arrive at the receiver.
1~: timestamp of the i-th packet leaving the sender according
to Cr, i=l,2,..., N.
tj:timestamp of the i-th packet leaving the sender according
to C8, i=l,2 ,..., N;t:=C, (ii).
tj:timestamp of the i-th packet arriving at the receiver ac-
cording to C~, i = 1,2, . . . ,N.
di: end-to-end delay measurement of the i-th packet, using
timestampst: andtj, i = 1,2,... ,N;

di=t~–t~ (3)

Fig. 2 shows the timing between C, and Cr when C8 runs
half the speed of C, and all the packets experience the same

network de<ay. The end-to-end de~ay of the i_-th packet consis-
tent with C, is t: – 1;. However, li is not known at the receiver,
and da is estimated using tfand tf.As a result, in this case,
the end-to-end delay is consistent with neither C. nor Cv. To
make it consistent with Cr, we need to determine the skew of
C, relative to Cs, and remove it fi-om the measurement di.

t; t; t; c,
, , I 1 ! , ,

Fig. 2. Timing chartshowingconstantdelay

B. Clock Skew in Delay Measurements

When there is a constant clock skew between two clocks, the
clock offset between them gradually increases or decreases over
time, depending on the sign of the skew. The amount of increase
or decrease in the clock offset is proportional to the time dura-
tion of observation. We use the change in offset to estimate the
clock skew. Thus it is more convenient to use timestamps rela-
tive to a specific point in time, such as the departure and arrival
times of the first packet, than absolute timestamps. Below we
introduce relative timestamps at the sender and the receiver.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

● ~: time duration between the first and the i-th packets’ depar- and the receiver clocks is constant. and the receiver clock is the
t&es at the sender consistent with C,.

<=0 and ~= A(ll,l,, Cs)~t:– t:.

. ~: time duration between the first and the i-th packets’ ar-
rivals at the receiver consistent with C,.

<=0 and ~=t[–t~.

By (1) and (2),

A(ll,li, Cr) = li – 11 = QA(11,1%7C.) = CYi~. (4)

Fig. 3 illustrates the relationship between A(ll, li, C.) and f; on

a timing chart. The quantities ~1 and & shown in the figure are
defined below.
. di: end-to-end delay consistent with Cr.

& = A(ll, t{, Cr) =t; ‘h,

di = A(lijt$j C.) = t:– li,

= t:–ll–afi =(t; -t;)+ (t; -11) –a~,

= ~+dl–cYfi. (5)

The quantity ~i, however, is not obtainable directly from mea-
sured timestamps, due to the skew between the sender and re-
ceiver clocks. The quantity that is obtainable fi-om actual times-
tamps is the following.

. ~,: delay calculated from ~ and ~~.

J.. = fi-~=~+dl-~fi+(~-l)~~-~l

= d,+(a–1)~–dl (6)

The goal of estimating and removing the clock skew is to obtain

& from the actual delay measurement,&. From (3) and (6), we

note that the difference between d~ and ii is:

d~–d,=t~–t;.

Also note in (6) that & differs from & by (a – 1);; minus a

constant dl. If a > 1, (a – I)& grows linearly with i;, and thus

~, gets larger. This is what contributed to an increasing trend
we observed in Fig. 1. Finally, fi-om (6), it is obvious that the
measur~d network delays can be made consistent with C, given
a and d%according to:

Z.. =J~-(Q-l)~+dl. (7)

Let & and@ be the estimates for a and dl. Then the delay after

the skew removal, ii, is:

&=Ji-(&-l)~+~ (8)

C. Desirable Properties for Skew Estimation Algorithms

Before we delve ~to Ae details of ~e skew estimation algo-
rithm, we first state the desirable properties that any such algo-
rithm should exhibit. We use these properties later as a basis for
comparing different estimation algorithms.

We begin by introducing the notations for an estimation algo-
rithm and estimates parametrized by the estimation algorithm.
Let A be a skew estimation algorithm. We make the same as-
sumption as in Section IV-A that the skew between the sender

“true” clock. Given a set of end-to-end delays, D = {di}~l,
which are predetermined and fixed, and also consistent with

the “true” clgck, we know that the delay measurements, ~i ‘s,
are equal to di if the clocks on the two hosts are synchronized

(a= O); ~i differs from d, if the clock skew is not zero (a ~ O).

In that sense d~ depends on the clock skew, CY,and ~i, and is

noted & (a, D).

We define &d (cr, D) and ~d(a, D) to be the estimates of

a and &, respectively, delivered by algorithm d, when given
~i, 1< i < N and Q. Below is a list of desirable properties that
should be exhibited by algorithm A.

Property 1 The time and space complexity of algorithm A
should be linear in N. The computational complexity of an
algorithm in terms of time and space is an important metric in
assessing the performance and applicability of the algorithm.
We will compare the time complexity of skew estimation al-
gorithms as a fimction of the number of delay measurements.

Property 2 Since the purpose of the skew estimation is to re-
move the skew from delay measurements, it is desirable that
the delays be non-negative after the skew is removed,

~i = ji(~jD) - (6~(~jD) – 1)~ + Pd(~>D) z O

Property 3 The skew estimation algorithm should be robust in
the sense that it is not affected by the magnitude of the actual
skew. That is, the difference between the estimate and the
actual skew should be independent of the actual skew. Under
the same network condition, the skew estimate for different
skews should exhibit the same margin of error from the actual
skew, no matter how small or large the skew is. We state this
property as follows:

&d(~,D) –a = &I(l, D) – l,VQ >0. (9)

In the following section, we introduce anew algorithm based
on linear programming to estimate a in delay measurements,
and use the result to remove the skew from one-way delay mea-
surements to make them consistent with the receiver clock. In
this paper, we focus on a simple case where the clock skew is
constant, and defer the discussion of time-varying skew to [1 1].

V. LINEAR PROGRAMMING ALGORITHM

Fig. 1 illustrates a trace where the skew between two clocks
was nearly constant over the measurement duration. Looking
at the figure, one is tempted to pickup a ruler, draw a line that
skims through the bottom of the mass of the scatter-plot, mea-
sure the angle between the line and the z-axis, and calculate the
skew using simple &igonome@. This approach is hard to auto-
mate, and invites human errors that are untraceable. A second
thought would be to pick the first and last data points, and draw
a line between them. The accuracy of this approach, however,
can be easily thrown off, since delay has formidable variability
that is in the order of magnitude bigger than the skew all through
the measurement duration. Our approach is to fit a line that lies
under all the data points, but as closely to them as possible.

We have formulated the above idea as a linear programming
problem. The condition that the line should lie under all the data
points forms the first part of our linear programming problem,
and defines the feasible region for a solution; the objective fimc-
tion of the linear programming problem is to minimize the sum
of the distances between the line and all the data points on the
y-axis.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

A. Algorithm ● Step 4. If it passes the cumulative minima test, pick the me-

Having presented our intuition behind the algorithm, we now
formally introduce the algorithm. The goal of the skew estima-

tion aIgorithm is to estimate the clock ratio a given ~ and &.

The output of the skew estimation algorithm is: ii and B, where

& is the estimate of a, and ~ is the estimate of dl. We return to

the interpre~ation of @at the end of this section. If ye e@nate
both a and dl correctly, then we can subtract (a – I)tj – dl born

~i, and obtain di, which is the end-to-end delay consistent with

C, and free of clock skew. Even _when the estimates ~ and ~
are not exactly the same as a and dl, we still want the resulting
end-to-end delay to be non-negative, after the skew is removed.
When we formulate our skew estimation as a linear program-
ming problem, this condition defines the feasible region where
a solution should lie,

J-(6-l)fi+~~0, 1< ’i<.N (lo)

There are infinitely many pairs of ti and ~ that satis~ the con-
dition above, if the feasible region defined by (10) is not trivial.
Our objective fimction to minimize the distance between the line
and all the delay measurements is stated as

min{~ (J2 – (~ – 1)~~ +~)} (11)
i=l

and is used to determine the solution to & and ~ from (10).
One important point to note in (10) is that the estimated end-

to-end delay of ~i, calculated as (&– (d – 1)~ + ~), once d and

~ are obtained, will be greater than zero instead of being greater

than mint d,. Thus ~ is actually an estimate of (~1 + mint ~J.

The resulting delay of ~i – (d – 1)? + ~ is not the end-to-end
delay, but rather the variable portion of the end-to-end delay.

In the following sections, we look into other algorithms that
can be used in skew estimation, and compare them with our lin-
ear programming algoritlun in terms of the properties listed in
Section IV, and their perfommnce in actual and synthetic mea-
surements.

VI. OTHER ALGORITHMS

A. Paxson k algorithm

In [5], [6], Paxson designed an algorithm for removing a clock
skew from a set of forward and reverse path delay measure-
ments. In this section we briefly describe how we use his algo-
rithm when given delays in only one direction. Assume that the
input to the algorithm is the same as in the previous linear pro-
gramming algorithm. Readers are referred to [5], [6] for more
detail. Paxson’s algorithm is as follows:

●

●

●

Step 1. Partition &‘s into fi segments, and pick the
minimum delay measurement &om each segment. The se-
lected measurements are called the “de-noised” one-way tran-
sit times (OTTs).
Step 2. Pick the median of the slopes of all possible pairs
of the “de-noised” OTTS. If the median slope is negative, as-

sume that the OTTS have a decreasing trend (here we assume
a decreasing trend is detected).
Step 3. Select the cumulative minima test fi-om the “de-
noised” OTTS (see [5]), and test if the number of cumula-
tive minima is large enough to show that the decreasing trend
found in Step 2 is probabilistically not likely, if there is no
trend.

dian horn the slopes of all possible pairs of the cumulative
minima: output it as the estimate of Q – 1. Otherwise, the
algorithm concludes that there is no skew, and outputs 6 = O.
The core of Paxson’s algorithm is the robust line fitting tech-

nique based on robust statistics 12]. It uses the median as a ro-
bust estimate for the slope. As mentioned in [5], [6], robust line
fitting alone fails in estimating the slope of the trend due to the
high variability in OTTS, and that is why the “de-noised” OTTS
and cumulative minima are used in his algorithm.

B. Linear regression algorithm

Linear regression is a standard technique for fitting a line to
a set of data points. It is optimal in the mean square sense if
the network delays are normally distributed, but is not robust
in the presence of outliers. As pointed out in [5], [6], it is not
a good choice for a skew estimation, even when applied to the
“de-noised” OTTS above. Here we use it only as a reference
algorithm that requires no knowledge of the underlying behavior
of delay measurements.

C. Piecewise minimum algorithm

There is another simple algorithm to illustrate the difficulty in
estimating the skew. It partitions the delay measurements into
segments, picks a minimum flom each segment, and connects
them to obtain a concatenation of line segments. The minima
are the same as the “de-noised” OTTS in Section VI-A. The
resulting concatenation of line segments is the estimate of the
skew, and is very unlikely to be a straight line.

When the skew is as obvious as in Fig. 1, the resulting con-
catenation of line segments is close to a straight line, and can be
used as a rough estimate.

VII. COMPARISON OF THE FOUR ALGORITHMS

In this section we compare the four algorithms based on the
desirable properties ftom Section IV. We also apply the algo-
rithms to actual delay measurements, and compare their perfor-
mance by looking at the adjusted delays. Last we use delay mea-
surements from simulation to compare our approach to Paxson’s
algorithm.

A. Computational complexity

The time complexity of a two-variable linear programming
problem is proven to be O(N) [13], [14], We have implemented
a simpIe and efficient O (N) algorithm that exploits the fact that

fi’s are sorted in our specific problem [11]. The other three
algorithms afso have complexity of O (N).

B. Non-negative delay after the skew removal

In order to guarantee that the delay remains positive after the
skew is removed, a skew estimation algorithm must estimate dl
correctly. The linear programming algorittyn, however, is the
only one that estimates dl (or al + mint d~), as explained in
Section V. Paxson’s original algorithm for skew estimation is
for two-way measurements after the clock offset has been re-

moved. The linear regression algorithm provides an estimate of

,8. However, this is just the y-intercept of the regression line
which bears no relevance to the correct estimation of dl. The
piecewise minimum algorithm outputs a concatenation of line
segments, and the slopes of those line segments are skew esti-
mates. The algorithm does not have any provision to guarantee
that all the data points lie above the concatenation of line seg-
ments.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

For the three algorithms that do not provide an estimate for il
that ensures that delays are non-negative after the skew removal,

we choose a ~ that satisfies the following condition for all d‘s
in each algorithm:

(12)

..,.
where I& = 6 and /3i = /3 for 1 ~ i ~ N in Paxson’s and linear
regression algorithms; in the piecewlse minimum algorithm &l

and,& are determined by the line segment to which ~i and ~
belong to.

C. Robustness

We focus on the performance of an algorithm, as measured
by the difference between the estimate and the actual skew, and
whether the difference depends on the variability of the network
delays alone, and not on the magnitude of the clock skew. This
property guarantees that the estimation algorithm performs reli-
ably, in the sense that the margin of error remains the same, no
matter how large the skew is.

We first show that the linear programming algorithm satisfies
this property, and follow it with a discussion about other algo-
rithms .

C. 1 Linear Programming Algorithm

Using the same assumptions and notations for the skew esti-
mation algorithm and estimates as in Section IV-C, we consider
two different clock skews _&at varies from one to some constant
for a set of delays, ‘D = {dz }~1, where di’s are fixed. From one
set of measurements to the other, nothing changes except for the
frequency of the sender clock relative to the receiver clock. The

receiver observes that the delay measurements, ~i ‘s, are differ-
ent from one skew to the other, but the end-to-end delays di
consistent with the receiver clock remain the same in both sets.
We also note that Z‘s remain the same in both sets.

Consider the sender and recgiver clocks are “true” clocks, and
a set of packet delays, D = {di }~1, is consistent with @e “true
clock.” Suppose that we measure those delays when the fre-
quency of the sender clock changes so that the skew is Q # 1.
From (6) we have

TABLE 1
SAMPLEVARL414CEOFSIMULATIONRESULTSTOTESTPROPERTY3

~

C.2 Other algorithms

It is clear that the linear regression algorithm satisfies Prop-
erty 3. In the piecewise minimum algorithm, the increase in
measured delay due to a clock skew is a fimction of the sender
tirnestamp, but not of the end-to-end delay as stated in (6). As
the skew gets larger, the increase due to the clock skew becomes
the dominant part of a measured delay, and the minimum of a
segment is more likely to be found near the beginning of the
segment. Depending on the magnitude of the skew, a minimum-
based algorithm uses different minima, and clearly the differ-
ences between the estimate and the actual skew are not the same.

Since Paxson’s algorithm employs a robust line fitting tech-
nique after local minima are obtained, we choose to simulate
Paxson’s ahzorithm to examine its robustness. In the simulation.
the number-of packets is 600, and a changes from 0.01 to 0.1
and 4. The end-to-end delay consistent with C,, di, is assumed
to have an exponential distribution with the means, p = 10msec
and p = 100msec. The purpose of the simulation is to show the
variability of the difference between the estimate and the actual
skew over a range of clock skews. Thus we use the same set
of ~1 for all three values of a, and calculate the sample mean
and the variance of the estimates. As shown in Section VII-C. 1,
the difference between the actual skew and the estimate does not
change in the linear programming algorithm case, and thus the
sample variance of the estimates ffom the algorithm remains the
same for the three values of a in the simulation. The sample
variance of Paxson’s algorithm, however, increases as the skew
increases. We list only the sample variances in Table I. This
illustrates that the difference between the actual skew and the
estimate of Paxson’s algorithm grows as the skew grows, and
thus the algorithm does not satisfy Property 3.

&(l, D) = cl, – Jl (13) D. Measurement

d,(a,D) = dz+(a–l)~–~l (14)

Let Abe the linear programming algorithm, and consider the

problem of determining & and ~ when both clocks are “true”
clocks. By (10), (11), and (13), the problem becomes that of

minimizing ~fll {~~ – ~1 – (~ – l)fi + ~} such that ~ >

(ti-l)fi-d; -t-dl,A for l<z <N.

Let 6A(1, D) and PA (1, D) be the values that solve this prob-
lem.

Now define a“ = (a+ dd(l, D) – 1), and substitute Q* – a
with dd (1, D) —1 above, and the above problem is now equiva-

lent to choosing a* and ~ that minimize ~fll {& – ~1 – (a” –

CY);$ – ~} such that ~ > (CY* – cY)j~ - & + ~1, for 1<

i < N. By (14), it is equivalent to choosing a“ and ~ to

minimize ~~l{~i(~, D) – (~’ – 1)~ + ~} such that ~ z

(a” – 1)~ - J,(a, D), for 1 < i < N, which solves the

In this section we determine how each algorithm performs
when applied to actual measurements. We collected several
traces of delay measurements on the Internet and MBone [15]
between November 14, 1997, and December 21, 1997. Table
II provides a brief description of these traces. The clocks of the
end-hosts were not synchronized in all traces. We used constant-
length UDP packets whose payloads consisted of a sequence
number and a timestamp, and they were sent out at periodic in-
tervals.

Trace 1 in Table II exhibits an increasing trend in delay mea-
surements, which translates to a constant skew. All four algo-
rithms estimate the skew well, and we show only the results of
linear programming and Paxson’s algorithms in Fig. 4 to 5. On
the z-axis the sender timestamp, 2 is plotted, and on the y-axis,

the delay before and after the skew estimation and removal, d,

and ii – (d – 1) ~, are plotted.* The gray foreground is the
delay before the skew is estimated and removed, and the black

case when- the skew is a # 1. Let ~d(~, D) and ~d (a, D) be
the values that solve the above problem. Then we can conclude:

*Here we actuallyplot d, – mini d, and J, – (6 – l)% – mint d, to plot
tbe delaysbeforeand after the skew estimation and removal in the same range

&A(cq D) –a = tiA(l,~) – 1 and~~(a,~) = PA(l, D). of valueson theg-axis.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

TABLE 11
TRACEDESCRIPTIONS

Trace Date Type Source Destination Interval Time Duration

1 14Nov97 uni im.cs.umass.edu anhur.sits.se 80ms 12:50 4hr 10min

2 20Nov97 uni im.cs.umass.edu anhur.sits.se 160ms 16:03 5hr 54min

3 20Nov97 multi eraser. cs.umass.edu spiff.sits.se 160ms 15:54 lohr

Fig. 4. Lineor ProgronmrhgAlgorithm

500: I {

Fig. 5. Paxson’sAlgorithm

background is the delay after the skew is removed.

Fig. 6 to 9 are from Trace 3 in Table II. The same is on the
x and y axes, as in Fig. 4 to 5. The linear skew trend is appar-
ent as in Trace 1, but the delay behavior changes significantly
in the later half of the trace, and more losses are detected. This
is a multicast packet delay measurement, and the overall loss
rate of the trace is very high: 42°/0. The losses are more pro-
nounced as the jagged bottom of the gray plot in the second
half of the trace. Considering the extraordinary high loss rate of
the trace, we think that the clock skew was constant, but due to
heavy congestion inside the network, queueing delays increased
significantly over an extended period of time, and is shown in
measurements.

In Fig. 8 the linear regression algorithm fails miserably in es-
timating the skew. The large delays between 6 and 8 hours on
the x-axis produce outliers which have a significant impact on
the linear regression. After the skew is filtered out, the delay
has a decreasing trend, which is the opposite of the original in-
creasing trend. Since the linear programming and Paxson’s al-
gorithms come up with one estimate for the constant skew, the
resulting delays horn both algorithms are close to the x-axis,
while keeping the increased delay trend intact. The piecewise
minimum algorithm calculates too high a minimum over the
increased delay period, and ends up interpreting the increased
delay trend as a skew. The result is that the effect of network
congestion on delay is removed along with the skew.

Fig. 4 to 9 visually demonstrate the relative performance of
each algorithm. The linear programming and Paxson’s algo-
rithms estimate the skew accurately in the presence of different
levels of network congestion. In contrast, the linear regression
and piecewise minimum algorithms perform poorly when the
network is heavily congested, and the delay fluctuates signif-

lime

Fig. 6. Lineor ProgrammingAlgorithm

rime

Fig. 7. Paxson’sAlgorithm

.
2hr M nhr 8hr 10h,

rime

Fig. 8. Linear RegressionAlgorithm

1oooc—————— ..______ -.. —_ ———-------

I 1

I
Moot 1

Tune

Fig. 9. F%xwise Minimum Algorithm

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

icantly.

0,3

0.25
I

,..,, ~ = ,
_)L=1O

W= loo

p=iooo !
~:1--!: ~_____

0.102 0:104

0.05

t
... ..!.; ,,)!\i,.4

0°O~6 0.096 0.1

(i- 1
Fig. 10. Linear ProgrammingAlgorithm

0.35

n

.,.,
0.3 -

p-l
~=lo

0.25 -

..--.. ~ = ,00

p=looo

>
s 0.2 -

30.15 ~
E

& 1
Fig. 11. Paxson’s Algorithm

In order to investigate the relative performance more
precisely, we simulate the the linear programming and Paxson’s
algorithms with synthetic delay, and compare the sample mean
and variance of the estimate in the next section.

E. Simulation

The purpose of the simulation is to examine the average per-
formance of a skew estimation algotithm in terms of the sample
mean and variance of the estimate. We have simulated the linear
programming and Paxson’s algorithms on the same set of de-
lay data varying the following parameters: the mean delay (~),
the packet inter-departure time, the number of packets, and the
skew. We assume an exponential distribution for end-to-end de-
lays in our simulation and vary the mean (p) of the exponential
distribution ffom 1 to 10, 100, and 1000nzsec. The packet inter-
departure time is either 20msec or lsec; the number of packets
is either 600 or 3000; the clock ratio(~) varies from 1.0001 to
1.1 and 5. Only one set of results, however, are presented in
this paper, and readers are referred to [11] for further results and
discussion.

Fig. 10 and 11 are from 1000 runs when the packet inter-
departure time is 20msec, the number of packets is 600, and the
skew is 0.1. The mean delay (p) varies horn 1msec to 1000msec.
We plot& – 1 on the x-axis, and the fkequency on the y-axis in
Fig. 10 and 11. The histograms have a fixed bin size of 30; the
greater distance between the minimum and maximum of the es-
timates is, the wider the bin is. Most histograms are symmetric
centered at the mean delay, and their estimates are very close to
the true a values with a sample variance less than +4% of CS.
The histograms of the linear programming algorithm are consis-
tently less spread out than those of Paxson’s algorithm for the
given range of parameter values. We have shown through simu-
lation that the estimate of our linear programming algorithm is
unbiased against a small skew, and is likely to have less variance
than that of Paxson’s.

VIII. CONCLUSION

In this paper, we have presented a fiarnework for understand-
ing the systematic errors introduced in one-way network delay

measurements by unsynchronized clocks, and discuss several
properties desirable of a skew estimation algorithm. We have
developed an linear-programming-based algorithm, and com-
pared it with three other existing algorithms. The linear regres-
sion and piecewise minimum algorithms demonstrated a poor
performance over traces of Internet delay measurements. We
generated synthetic delay measurements, and analyzed the sam-
ple mean and variance of the estimates of our and Paxson’s algo-
rithms. The results show that the estimate of the linear program-
ming algorithm is likely to be unbiased and have less variance.
In conclusion, the linear programming algorithm addresses all
the desirable properties, and is simple, fkzst,and robust.

Acknowledgments

We would like to thank Maya Yajnik for helping us with the data
collection; Steve Pink at Swedish Institute of Computer Science,
and Chuck Cranor at Washington University in St. Louis for let-
ting us collect data at their sites; Jean-Chrysostome Bolot for the
suggestion of the piecewise minimum algorithm; Christopher
Raphael for pointing us to the linear programming approach;
and Robbie Moll for giving us his intuition behind the complex-
ity of our algorithm.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S, Deering and R. Hinden, ‘Tntemet Protocol, version 6 (IPv6) specifica-
tion;’ RFC 1883, Internet Engineering Task Force, December 1995.
H. Schrdzrimre, S. Cssner, R. Frederick, and V Jacobson, “RTP: A @ans-
port protocol for real-time applications,” RFC 1889, Internet Engineering
Task Force, jarr 1996.
D. Mills, “Network time protocol(version 3): Specification, implementa-
tion and ardvsis.” Tech. Reo.. Network Information Center. SRI hrtema-
tional, Menlb P~k, CA, M*ch 1992.
V. Paxson, G. Almes, J. Mahdavi, and M. Matbis, “Framework for 1P
~~mnance metrics,” RFC 2330, Internet Engineering Task Force, May
. . . .
Verrr Paxson, Measurements and Analysis of End-to-End Internet Dynam-
ics, Ph.D. thesis, University of California, Berkeley, 1997.
Vem Paxson, “On calibrating measurements of packet transit times: in
Proceedings of SIGA4ETRICS ’98, Madison, Wisconsin, June 1998.
Ramachandmn Ramjee, Jim Kurose, Don Towsl~, and Henning
Schukzrinne, “A&ptive playout mechanisms for packetmd audio appli-
cations in wide-area networks,” in Proceeding of INFOCOM ’94, 1994.
Sue B. Moon, Jim Kurose, and Don Towsl~, “Packet audio playout delay
adjustment Performance bounds and algorithms,” ACM/Springer h4ulti-
media Systems, vol. 5, pp. 17–28, January 1998.
Sudhir Dixit and Paul Skellv, “MPEG-2 over ATM or video dialtone net-
works: issues and .strategi&,” IEEE Network, vol. 9, no. 5, pp. 30-40,
September-October 1995.
D. Mills, “Modellirrg and analysis of computer network clocks,” Tech.
Rep. 92-5-2, Electrical Engineering Department, University of Delaware,
May 1992.
Sue B. Moon, Paul Skelly, and Don Towsley, “Estimation and removal
of clock skew from network delay measuremenLs,” Tech. Rep. 98-43, De-
partment of Computer Science, University of Massachusetts at Amherst,
Amherst,,MA 01003, 1998.
D. Hoaglm, F. Mosteller, and J. Tukey, Eds., Understanding Robust and
Explorato~ Data Analysis, John Wiley& Sons, 1983.
M. E. Dyer, “Linear algorithm for two- and three-variable linear pro-
marns,” SIAM Journal on Computing, vol. 13, PP. 3145, 1983.
~. Megiddo, “Linear time algori~ for lin~” programming in T3 and
related problems;’ SIAM Journal on Computing, vol. 12, no. 4, pp. 759-
776, November 1983.
Hans Eriksson, ‘&MBONE:the multicast backbone,” Corrunutdcations of
ACM, vol. 37, no. 8, August 1994.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

