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Ahtract- Understanding and modelling packet 10SSin the Internet is
especially relevant for the design and arudysis of delay-sensitive multime-
dia applications. In this paper, we present analysis of 128 hours of end-
to-end unicast and multieast packet loss measurement. From these we se-
Iectedl 76 hours of stationary traces for further analysis. We consider the
dependence as seen in the antocorrelation function of the originat loss data
as well as the dependence between good run lengths and loss run lengths.
The correlation thnescale is found to he 1000wM or less. We evaluate the
accuracy of three models of increasing complexity: the Bernoulfi model,
the 24ate Markov chain model and the .k-th order Markov chain model.
Out clf the 38 trace segments considered, the Bernoulti model was found
to be accurate for 7 segments, the 2-state model was found to be accurate
for 10 segments. A Markov chain model of order 2 or greater was found
to be necessary to accurately model the rest of the segments. For the ease
of ad?ptive apptieations wh]ch track loss, we address two issues of on-line
loss estimation: the required memory size and whether to use exponen-
tial smoothing or a sliding window average to estimate average loss rate.
We find that a large memory size is necessary and that the stkting window
average provides a more accurate estimate for the same effective memory
size.

1. lNTRODtJCTION

Packet loss is a key factor determining the quality seen by
delay-sensitive multimedia applications such as audiolvir.leo
con ferencing and Internet telephony. These applications expe-
rience degradation in quality with increasing loss and delay in
the network. Understanding the loss seen by such applications
is important in their design and performance analysis. Adap-
tive audiolvideo applications adjust their transmission rate ac-
cording to the perceived congestion level in the network (see
[6], [8], [9]). By this adjustment a suitable loss level can be
maintained and bandwidth can be shared fairly between con-
nections. For such adaptive applications it is important to have
simple loss models that can be parameterized in an on-line
manner.

In this paper, we present careful analysis of end-to-end loss
using 128 hours of measurements. The measurements are of
loss as seen by packet probes sent at regular intervals (of 20ms,
40ms, 80ms and 160ms) sent on both unicast and multicast
Internet connections. Since significant non-stationary effects
are seen in the data, we divide the traces into two-hour seg-
ments and check each segment for stationrtrity. Gradual de-
crease and increase in the mean loss rate, abrupt and dramatic
increase in loss rate for a few minutes and spikes of high loss
rate are observed. We analyze 76 hours of stationary trace seg-
ments to determine the extent of temporal dependence in the
data. The results show that the correlation timescale, the time

ThLs work was supported by the Nationat Scieuce Foundation under grant
NCR 9508274 and by Defense Advanced Research Projects Agency under
agretment F30602-98-2-0238. Any opinions, findings, and conclusions or rec-
ommendations expressed in this materiaf are those of the author(s) and do not
necessarily reflect the views of the Nationrd Science Foundation.

over which what happens to one packet is connected to what
happens to another packet, is approximately 1 second or less.
Beyond this timescale, packet losses are independent of each
other.

We also consider loss models of increasing complexity and
estimate the level of complexity necessary to accurately model
the stationary trace segments. The loss process is modelled
as a 2~-state discrete-time Markov chain model where k = O
corresponds to the Bernoulli model and k = 1 corresponds
to a 2-state Markov chain model. k is refered to as the or-
der of the Mrtrkov chain. For the datasets with sampling in-
tervals of 160ms, the Bernoulli model was found to be accu-
rate for 7 segments, the 2-state Markov model for 10 segments
and Markov chain models of orders 2 to 6 for the remaining
16. The Bernoulli and the 2-state Markov chain models are
not accurate for the traces with sampling intervals of 20ms
and 40ms and the estimated order of the Markov chain model
ranged from 10 to 42.

Adaptive multimedia applications often track the congestion
level in the network in order to adjust the rate of transmission
to share the bandwidth fairly and to maintain a low enough
loss level ([6], [9]). They can use information about loss in
the network over a period of time, instead of the traditional
per-packet loss information. For such situations of on-line loss
estimation, it is useful to know how much past information
is necessary to accurately estimate the parameters of the loss
models. The non-stationarity observed in the data shows that
the loss rate does vary over time, sometimes dramatically, and
thus up-to-date information is important.

Because of the need of adaptive applications for loss rate
estimates, we address the question of how much memory is
necessary for the on-line parameter estimator to provide an ac-
curate enough estimate. In general, it is found that the variance
in the estimator due to limited number of samples is high and
thus large numbers of samples are required to get an accurate
estimate. We also address the question of whether or not expo-
nential smoothing provides a better estimate of the mean loss
rate than the sliding window average. Though computationally
quicker and requiring less buffer space, exponential smoothing
needs more than twice as many samples to provide an estimate
with the same accuracy as the sliding window average.

Earlier works on the measurement of unicast and multicast
packet loss in the Internet ([1], [4], [5], [13], [14]) have noted
that the number of consecutively lost packets is small. In [14]
long outages of several seconds and minutes were also ob-
served on the MBone (multicast backbone network overlaid
on the Internet). In [12] measurements of voice traffic are ana-
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Date

14Nov97
14Nov97
20Nov97
12Dec97
20Dec97
20Dec97
21 Dec97
21 Dec97
26Jun98

TABLE I

TRACE DESCRIPTIONS

Type Sampling Destination Time Duration Loss
Inte;val (T) Rate

unicast 80ms SICS, Sweden 09:52 8hr 2.7%
multicast 80ms SICS; Sweden 09:53 8hr 11%
unicast 160ms SICS, Sweden 16:03 2days 1.970
multicast 160ms St. Louis 14:23 2days 5.2%
unicast 20ms Seattle 13:41 2hr 27min 1.790
multicast 20ms Seattle 13:49 2hr 27min 3.8’%o
unicast 20ms Los Angeles 13:17 2hr 1.4%
multicast 20ms Los Angeles 13:26 2hr 3.4%
unicast 40ms Atlanta 16:56 6hr 2.2%

Seg-
ments
4
4
24
25
1
1
1
1
3

#of stationary
segments
o
0
19
14
1
1
1
0
3

lyzed to assess the effects of strategies to compensate for vary- values in the set # = {O, 1}. The trace can also be divided
ing delay and loss on the quality of the voice connection. In
[1] statistical analysis of temporal correlation in loss data has
been described and weak correlation has been noted. The use
of discrete-time Markov chain models, particularly the 2-state
Markov chain model (sometimes called the Gilbert model) has
been proposed in [13], [7], [8], [1 1]. Discrete-time Markov
chain models of increasing levels of complexity, including the
2-state Markov chain model have been described in [13]. This
paper takes a more careful look at both temporal dependence
and lthe validity of using various models for packet loss using
76 hours of stationary data.

The remainder of this paper is structured as follows. In Sec-
tion II we describe how the data was collected, In Section III
we first describe two ways of representing the data and then go
on to discuss our analysis of stationarity and the temporal de-
pendence in the data. The models and an evaluation of their ac-
cura;y is presented in Section IV. In Section V we discuss the
memory size required for on-line estimation of model param-
eters and also the relative suitability of exponential smoothing
and sliding window averaging as ways of estimating the aver-
age 1oss rate. Finally, the conclusions are in Section VI.

II. MEASUREMENT

Our study of end-to-end loss in the Internet is based on
128 hours of traces. These traces are gathered by sending out
packet probes along unicast and mtdticast end-to-end connec-
tions at periodic intervals (of 20,40,80 or 160 ms) and record-
ing the sequence numbers of the probe packets that arrived suc-
cessfully at the receiver. The packets whose sequence numbers
were not recorded were assumed to have been lost. Thus the
loss data can be represented as a binary time series {xi}?=l
where z~ takes the value O if the ith probe packet arrived suc-
cess fully and the value 1 if it was lost. The interval at which
the probe packets are sent out into the network is referred to as
the samplinginterval(T) for the rest of the paper.

Tlhemeasurements are summarized in Table L The source
was located at Amherst, Massachusetts for all the traces. Note
that one multicast trace (not shown in the table) had an ex-
tremely high loss rate of 42% and was therefore disregarded
for analysis. For the rest of the paper, We refer to the datasets
using the notation “Date. Type” (for example, “20Nov97,uni”).

111. ANALYSIS

we consider two ways of representing the loss data. The
first is as a discrete-time binary time series {Z~}~=l taking on

into portions of consecutive 0s (called good runs) and portions
of consecutive 1s (called loss runs). Thus a second way of rep-
resenting the data is as the interleaving of the two sequences
of observations: {gi }j=l and {Zi}j=l where gi is the ith good
run length (expressed in number of packets) and li is the corre-
sponding loss run length (also expressed in number of packets).

The remainder of this section is structured as follows. We
discuss our analysis of the traces for stationarity in Section III-
A. We find that approximately 76 hours exhibit stationmity.
In Section III-B we focus on the temporal dependence in these
stationary trace segments as shown by the sample autocorre-
lation function of the binary time series representation of the
data. We discuss our analysis of the temporal dependence us-
ing the good run and loss run representation of the data in Sec-
tion III-C.

A. Stationar@

By looking at the smoothed loss data, obvious non-
stationarity is found in most of the traces. Hence, the traces
are divided into approximately two-hour segments and each
segment is checked for stationarity. For the rest of the paper
we refer to the trace segment using the notation “Date. Type-
Segment#” (for example, “14Nov97.uni-3”). A time series is
said to be stationary in the strict-sense, if the statistical prop-
erties remain constant over the entire series. A time series is
said to be stationary in the wide-sense (also called weak sta-
tionarity) if the mean and covariance function remain constant
over time. Since there is no good way to rigorously test for
stationarity, we check whether the average loss rate varied sig-
nificantly in the trace segments. We smooth the trace using a
moving average filter (of window size 2000 packets) to judge
the extent of variation of the average loss over the length of
the trace. Abrupt increases of greater than 0.05 in the average
loss rate are taken to be an indication of non-stationarity. To
test for gradual increase or decrease in the average loss rate,
we fit a straight line to the data (which minimizes the least-
square error) as an estimate of the linear trend. A total change
in the average loss rate of 0.015 or greater, over a 2 hour trace
segment, is considered to be an indication of non-stationarity.

There are different kinds of observed non-stationary effects.
For example, the smoothed 10SSfor the third segment of trace
u14NOv97.unil~ shows a slow, linear decay in 10ss Percentage

from 2.5% to l% over one hour. Such slow decays and in-
creases were noticed in other traces as well. Also, there is an
abrupt, dramatic increase from 1YOloss to 25% loss lasting for
approximately 10 minutes before abruptly dropping to a lower
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Fig. 1. Sample Autocorrelation Function of Binary Data for 20Nov97.uni-l

loss rate. Such abrupt increases were noticed in other traces
although this trace segment shows the most dramatic increases
which last the longest time.

Table I summarizes the results of our analysis for stationar-
ity. Traces “20Dec97.multi” and “21Dec97.multi” exhibit pe-
riodi c behavior (with a period of 500rns) making them difficult
to analyze and model. Thus we identify 38 out of 64 two hour
segments from five traces for further analysis in the following
sections.

B. A,utocorrelation of the Binaiy Loss Data

The sample autocorrelation function of the loss data for
the stationary segments, expressed as the binary time series
{W]j!=l, reveals the extent of dependence in the loss experi-
enced by the probe packets over time. In this section, we de-
fine the autocomelation function and the correlation timescale,
describe the estimation of correlation timescale from the auto-
correlation function and discuss the results for the stationary
loss data.

Let {.Z}& be a stationary sequence of random variables
and let {zi }~=1be a realization of {Z;}. The autocorrelation
function for {Z~ } is deftned as

w’(~) = ~[(-a+h – Pz)(z – /-Jz)l/~[(a – PZ)21

where pZ is the mean and h is the lag.
The sample autocovariance function, assuming stationarity

is

where h is the lag and Z is the sample mean. The sample auto-
correlation function is

p(h) = ~(h)/~(0) – n < h < n (1)

The lag can also be expressed in terms of time. That is, let d
be the lag in terms of time.

d=hr (2)

where r is the sampling interval.
Correlation timescale, c is the minimum lag, in terms of

time, such that {Z~} is uncorrelated at all lags, d, d ~ c.
For an independent stochastic process, the autoconelation

function is zero, and for a stochastic process that is indepen-
dent at a lag h, the autocorrelation function, PZ(h), is zero at

1~
‘.,,’.

!,. , ‘-.\.. .-.-. ‘:,-.=+-:,.,. . ... . ..-,-,... . .
0 - .-

[ I
0 500 1000 1500 2000

d Lag in terms of time (ins)

Fig. 2. Sample Autocorrelation Function for trace segments with T of
160ms,40ms end 20ms

that lag. In the case of an observed sample sequence which is
the realization of an independent stochastic process, the sam-
ple autocorrelation function could have non-zero, though very
small, values. Proposition 1 gives an idea of what constitutes a
significant value for the sample autocorrelation function for a
given number of samples, n (see [10]).

Proposition 1: For large n, the sample autocorrelations of
an IID sequence with finite variance are approximately IID
with a normal distribution IV(O, I/n) (mean of O and vari-
ance of l/n)(see [10]). Hence if {z~}~=1 is a realization of
such an IID sequence then, approximately 95% of the sam-
ple autocorrelations should fall between the confidence bounds
&l.96/fi.
The correlation timescale is the smallest lag in terms of time,
d, at and beyond which the value of the sample autocorrelation
function becomes small enough to be considered insignificant.

Using Proposition 1 we can test the following hypothesis:
Hypothesis 1: {Zi}& is independent at lag h

The test statistic is calculated from the sample autocorrelation
function of the sample sequence, {z~}~=l at lag h as follows.

s = p(h)/fi (3)

If the hypothesis is true, then S has a limiting standard nor-
mal distribution. Thus, for example, if \SI > 1.96 then the
hypothesis is rejected at significance level 0.05.

The results for the loss data show that there is some corre-
lation at small lags, and that the sample autocorrelation func-
tion decays rapidly. As an example, consider the first segment

““ “20Nov97.uni-l” with T of 160ms.of trace “20Nov97.unl ,
Fig. 1 shows the autocorrelation function of the binary loss
data. A value close to zero of the sample autocorrelation func-
tion, for a lag of h, indicates independence between Zi and
,%+h. For n samples, the confidence bounds of &l.96/&
(plotted as dotted lines) show the range of values which are
close enough to zero to indicate independence. The autocor-
relation at lag 1 (that is, the correlation between consecutive
packets) is approximately 0.03. It is clear that from a lag of 3
onwards the autocorrelation function becomes insignificantly
small except for a few stray points. This means that the data is
dependent up to a lag of 2 and that the correlation timescale is
480rns.

We analyze all of the stationary segments of our traces. The
traces, “20Nov97.uni” and “12Dec97.multi” have T of 160ms,
the traces “20Dec97.uni” and “21Dec97.uni” have T of 20ms
and the trace “26Jun98.uni” have a T of 40ms. For the trace
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Fig. 3. Frequency Dkribution of Correlation Timescsle

segments with T of 160ms, the sample autocorrelation func-
tions are similar to that described in the example trace segment
and the correlation between consecutive packets is found to
vary between –0.020 and 0.090 with an average of 0.018.

For the 20ms traces, the autocorrelation function at lag 1
is approximately 0.2 which is much higher than that for the
160ms trace segments. The 40ms trace segments show a sim-
ilar high autocorrelation of approximately 0.14 at lag of 1. The
values of the autocorrelation functions for the 20ms traces
remain significant for lags of 42 or less, and for the 40ms
traces, they remain significant for lags of 20 or less. Fig. 2
shows the sample autocorrelation as a function of lag expressed
in terms of time, for three trace segments “20Nov97.uni- l“,
“26Jun98.uni-1” and “20Dec97.uni” with r of 160ms, 40ms
and 20ms respectively. The figure shows that the correlation
timescale is 1000ms or less.

The correlation timescale of a data segment is estimated as
the smallest lag (expressed in terms of time) for which the Hy-
pothesis 1 is rejected at significance level of 0.05 (that is, as
the smallest lag at which the time series is independent), Note
that this method could underestimate the correlation timescale,
since the autocorrelation function could show dependence at
some higher lag, but we have ignored this effect. The results
for all the stationary trace segments are summarized in Fig. 3 as
a frequency distribution of the correlation timescale estimated
for each data segment. The correlation timescale is less than
1000ms except in two cases.

C. Good Run and Loss Run Lengths

The second way of representing the data is as alternating
sequences of good run lengths and loss run lengths: that is,

{9i}& and {li}~=l. We check the dependence between the
good runs and loss runs by plotting the autocorrelation func-
tion of the good run lengths and the loss run lengths and the
crosscorrelation function between the good run lengths and the
loss run lengths. We use the 95% confidence interval from
Proposition 1 to assess whether or not the values of the corre-
lation functions are significant.

The three sample correlation functions indicate indepen-
dence for all the segments in the trace “20Nov97.uni”. De-
pendence between the good run lengths is seen for trace
“12Dec97.multi” in 4 cases (up to lags 4, 5 and 7). The
20ms traces (“20Dec97.uni” and “21Dec97.uni”) exhibit dif-
ferent results. The autocorrelation function of the 10SS runs
and the crosscorrelation function of the good runs and the loss
~n~, show the independence among loss runs and between
good runs and loss runs. However, the good runs lengths do
show some dependence (up to lags 25 and 12). The trace

“26Jun98.uni” with r of 40ms displays independence for all
three correlation functions.

The next step is to look at the distributions of the good run
and the loss run lengths. Figures 4 and 5 show the distribu-
tion of the good run lengths and the distribution of the loss run
lengths for “20Nov97.uni-l”. Both figures also show the dis-
tributions predicted by the models for comparison with the ob-
served data which will be discussed in Section IV. It is evident
that the distribution of the good mn lengths decays approxi-
mately linearly when a logscale is used for the y-axis, suggest-
ing that good run lengths are geomterically distributed. The
loss run lengths are either 1 or 2. The other stationary segments
from the 160ms traces show similar results. The distribution of
the good run lengths for the segments of traces “20Nov97.uni”
and “12Dec97.multi”, by visual inspection, appear approxi-
mately geometric. For some segments there is an excess of
short good run lengths (less than 5). The loss run lengths are
never greater than 4 for all but 4 segments of “20Nov97.uni”
and “12Dec97.multi”. This low number of consecutive losses
has been noted in earlier work( [4], [5]).

The distributions of good run and loss run lengths for the
traces “20Dec97.uni”, “21Dec97.uni” and “26Jun98,uni” look
somewhat different. For example, the distribution of good run
lengths in Fig. 6 for the trace “20Dec97.uni” shows a geomet-
ric decay except for the high probability of burst lengths of
less than 10. The distribution of loss run lengths for this trace
shown in Fig. 5, shows approximately geometric decay. Traces
“21Dec97.uni” and “26Jun98.uni” show similar results.

Since the good run lengths for “20Nov97.uni” and
“12Dec97.multi” appear to be geometrically distributed, we
use the Chi-Square goodness-of-fit test to provide more sys-
tematic evidence that the distributions are geometric. We com-
pare the empirical distribution of the good run lengths with
both an exponential (which is the continuous-valued equivalent
of the geometric distribution) and a Gamma distribution. The
shape and rate parameters are computed assuming a Gamma
distribution for the good run lengths. The shape parameter
(Q = (1/@2, where ,6 is the coefficient of variation) of the
Gamma distribution gives an idea of how close the distribu-
tion is to the exponential distribution (value of 1 corresponds
to an exponential distribution, which is a special case of the
Gamma distribution).The shape parameter for the segments of
“20Nov97.uni” varied between 0.407 and 1.620 with an aver-
age of 0.806 and that for for the segments of “12Dec97.multi”
varied between 0.882 and 1.083 with an average of 0.995.

The Chi-Square goodness-of-fit test is used to check whether
to reject the hypothesis that the good run lengths are IID ran-
dom variables with the given distribution. The following hy-
pothesis is tested for both the Gamma and the Exponential dis-
tributions.

Hypothesis 2: The good run lengths are IID random vari-
ables with the given distribution function.

For traces “20Nov97.uni” and “12Dec97.multi”, the hypothe-
sis is rejected for the exponential distribution for 11 out of 33
segments and for the Gamma distribution it was rejected for
2 out of 33 segments. It is difficult to similarly use the Chi-
Square goodness-of-fit test for the loss run lengths because the
lengths of the loss run lengths vary within a very small range.
The continuous-value distributions were used to make it easier
to determine the partitions for the test.
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IV. MODELLING

In this section we discuss the potential of using three mod-
els clf increasing complexity: the Bernoulli model, the 2-state
Marlkov chain model and the k-th order Markov chain model
for modelling the data. The loss process which characterizes
the binary time series (as described in Section III) is consid-
ered to be {Xi }& a 2k-state stationary discrete-time stochas-
tic process. The order of the Markov process, k, is the number
of previous values of the process on which the current value
depends and is a measure of the complexity of the model. The
Bernoulli model is of order O and has no states. The 2-state
Marlkov chain model is of order 1. The k-th order Markov
chain model is a generalization of these two models and has 2~
states. First, in Section IV-Awe describe the models and asso-
ciated parameter estimators. Then in Section IV-B we assess
the validity of the models for the stationary trace segments.

A. Models

A. 1 Bernoulli Loss Model

In, the Bernoulli loss model, the sequence of random vari-
ables, is IID (independent and identically distributed). That
is, the probability of Xi being either O or 1 is independent of
all other values of the time series and the probabilities are the
same irrespective of i. This model is characterized by a single
parameter, r, the probability of Xi being 1 (corresponds to a
lost packet). It is estimated from a sample trace by

~ = nl/n (4)

where nl is the number of times the value 1 occurs in the
observed time series, {X,}~=l and rz is the number of samples
in the time series. Thus ? is the average loss rate. The good
run length distribution for this model is .f (j) = ?(1 – ?)~’1
forj = 1,2 , ...co and the loss run length distribution is ~(j) =
(1 -- ?)t~-l for-j = 1,2, ...co.

10-’

n

2 \
m!s!sii’.-

0

-..
1O-’J ;0 ,;O ,;O

Number of packets in fhe%st b
250 300

Fig. 6. The Distribution of Good Run Lengths for 20Dee97.uni

~:k0 2
Number o!packets In ;e burst b

e 10

Fig. 7. The DMribution of Loss Run Lengths for 20Dec97.uni

A.2 Two-state Markov Chain Model

In the 2-state Markov chain model the loss process is mod-
elled as a discrete-time Markov chain with two states. The
current state, Xi of the stochastic process depends only on the
previous value, Xi–l. Unlike the Bernoulli model, this model
is able to capture the dependence between consecutive losses
but has an additional parameter. The two parameters, p and g,
are the transition probabilities between the two states.

p = P[xi = qx+l = o], q = P[xi = O[xi_l= 1]

The maximum likelihood estimators (page 26 of [2]) of p
and q for a sample trace are

@= nO1/nO (5)

(j = nlo/nl (6)

where nol is the number of times in the observed time series
that 1 follows O and nlo is the number of times O follows 1.
no is the number of 0s and nl is the number of 1s in the trace.
The good run length distribution for this model is ~(j) = @(l–
fi)~-l forj = 1),2, . ..co and the loss run length distribution is

f(~) = 4(1 - 6) ’-1 for~ = 1?2, ...~.

A.3 Markov Chain Model of k-th order

A class of random processes that is rich enough to capture
a large variety of temporal dependencies is the class of finite-
s.tate Markov processes. The Bernoulli model and the 2-state
Markov chain model are special cases of this class of models.
In the Markov chain model, the current state of the process
depends on a certain number of previous values of the process
which is the order of the txocess..
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Such a process is characterized by its order k, and by a k x 2
conditional probability matrix Pk whose rows may be inter-
preted as probability mass functions on X (X = {O, 1}) ac-
cording to which, the next random variable Xi is generated
when the process iS in a state Z$_~Z~_h+l . . . x~-1.

P[Xi = W\XGI = $i–1, . . .. Xi–k = zL/J

= P~[z~lz&l, . ...zi–k]

A process {Xi} is a Markov chain of order k, if the condi-
tional probability

is independent of z~_~ for all h > k (see [3]). Note that the
Bernoulli and the 2-state Markov chain model are special cases
of the Markov chain model corresponding to orders of O and 1
respectively.

Let {zi}~=l bean observed sequence from a Markov source.
The k-th order state transition mobabilities of the Markov
chain can be estimated for all a ~ .2?,L c Xk as follows. The
number of states is 2~ and the number of conditional probabil-
ities is 2h+l.

Let~ = (bl, .. .. bk ) be a given state of the chain. Let n~a be
the number of times state L is followed by value a in the sample
sequence. Let nb be the number of times state b is seen. Let

P;;a be an estimate of the Probability that xi = @ given that

(xi-k, ... . &-I ) = b. Then p~;a estimates the state transition
probability from state Q to state (bz, .. .. b&.-l, a). The maxi-
mum likelihood estimators of the state transition probabilities
of the k-th order Markov chain are

{

nba
- ifnb >0

P;;. = on~ -
otherwise

B. Results for the Stationary Segments

The autocorrelation function of the binary loss data as dis-
cussed in Section III-B shows some correlation for small lags.
The Bernoulli model does not capture any of the correlation as
seen, for example, in Fig. 1. The 2-state Markov chain model
is able to accurately model the correlation only for a lag of
1. The estimated order of the binary loss process indicates the
complexity of the Markov chain model necessary to accurately
mod~elthe data. If the estimated order k is O, then the Bernoulli
loss model is accurate, if it is 1 then the 2-state Markov chain
moclel is accurate, and if it is 2 or greater, then a Markov chain
moclel of order k is required.

TABLE II
THE BERNOULLIAND 2-STATE MARKOV CHAIN MODEL PARAMETERS

Data ,. ,.
l–~

20Nov97.uni minimum I 0.000\ I 0.000! I 0.0208
maximum 0.0351 0.0347 0.0909

average 0.0162 0.0158 0.0471
12Dec97.multi minimum 0.0376 0.0373 0.0408

maximum 0.0735 0.0749 0.0636
average 0.0496 0.0496 0.0513

20Dec97.uni 0.0168 0.0141 0.1732
21 Dec97.uni 0.0135 0.0109 0.2085
26Jun98.uni minimum 0.0204 0.0178 0.1452

maximum 0.0254 0.0218 0.1608
average 0.0222 0.0192 0.1546

Testing Hypothesis 1 (that the binary loss data is indepen-
dent at a given lag h) using the sample autocorrelation function
is discussed in Section HI-B. An alternative method of testing
the same hypothesis is by using the Chi-Square Test for inde-
pendence. The test statistic for sample sequence, {.z~}~=l and
a lag of h is

@=p
nuv – nunv/n)2

~=(),land~=(),]
ntinu/nU,’u

where n., u & {O, 1} is the number of times u occurs in the
sample sequence and similarly, nw is the number of times v
occurs in the sample sequence. ntiv is the number of times
.zi = u and Zi+h = v (that is, the number of times v follows
u after a lag of h). # is distributed as a chi-square distribution
with 1 degree of freedom.

The order of the Markov chain process is estimated by esti-
mating the minimum lag beyond which the process is indepen-
dent. This is similar to the estimation of correlation timescale
from the sample autocorrelation function as discussed in Sec-
tion III-B. Thus we test Hypothesis 1 for lags from 1 to 50. Let
1 be the first lag at which the hypothesis is not rejected, Then
the estimated order is 1 – 1. Fig. 8 shows the frequency distri-
bution of estimated order of the Markov chain for the station-
ary segments over all the datasets. The two methods of testing
the independence hypothesis give the same results. Figure 8
shows that, out of 38 segments, The Bernoulli loss model is
accurate for 7 segments, the 2-state Markov chain model is ac-
curate for 10 segments and for the rest of the segments Markov
chain models of higher orders are necessary for accurate mod-
elling. The estimated order for datasets “20Nov97.uni” and
“12Dec97.multi” ranges from O to 6. Out of 33 segments of
these traces, the Bernoulli model is accurate for 7, the 2-state
Markov model is accurate for 10 and a Markov chain model of
order 2 or greater is accurate for the remaining 16. For datasets
“20Dec97.uni”, “21Dec97.uni” and “26Jun98.uni”, the esti-
mated order ranges from 10 to 42 and is much higher than that
estimated for the other datasets and hence neither the Bernoulli
model, nor the 2-state Markov model are accurate.

Table IV-B summarizes the estimated model parameters (as
discussed in Section IV-A). It shows the minimum, maximum
and average over all stationary segments for each the dataset.
For trace segments where the value of (1 – ij) is higher than
the value of ~, the packet loss is burstier than predicted by the
Bernoulli model and the 2-state Markov chain model is more
accurate.
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Fig. 9. Mean Loss Rate Estimation for 20Nov97.uni-l for Memory Size of
500, 1000 and 10000

V. ON-LINE PARAMETER ESTIMATION

Adaptive applications monitor the congestion level in the
network in order to adjust their transmission rate to keep the
loss rate low and to share the available bandwidth fairly with
other connections. We address two issues in the on-line estima-
tion of loss for such applications. The first issue is the amount
of memory necessary for an accurate estimate of the Bernoulli
and the 2-state Markov chain model parameters (discussed in
Section V-A). The second issue is whether to use exponential
smoothing or a sliding window averaging to get up-to-date and
accurate average loss rate estimates (discussed in Section V-B)

A. hfemoryfor the Bernoulli Model and the l%o-State Markov
Model Parameters

Equation 4 gives an estimator for the Bernoulli loss model
parameter, r which is equivalent to the mean loss rate. Assume
that M values of the binary loss data, Zi are available for esti-
mation. Henceforth, M will be refered to as the memory size
of?. Fig. 9 shows the estimation of the mean loss rate for the
example trace segment “20Nov97.uni- 1“ for memory sizes of
500, 1000 and 10000 plotted as a function of the packet se-
quence number. The graphs display the extent of variation in
the estimated mean loss rate (it varies between 0.5?70and 3.570
for M of 1000). The 95% confidence interval for this estimator

is (?– 1.96{~, ?+ 1.96~~) Thus for
an accuracy of +b?lo in the estimator, and a confidence level of
95%, the required M = (l/t – 1)(196 /b)2. For example, for
an accuracy of + 107o in the estimate of?, the required ill is
38032 for a loss rate of 1% and 3457 for a loss rate of 10%.

For the 2-state Markov chain model, the two parameters p
and q are estimated as given by (5) and (6). Instead of consider-
ing the parameter, q directly we consider the related parameter
s = 1 – q. For the example trace segment, @(not shown here)
shows a similar extent of fluctuation as ? shown in Fig. 9, but
3 fluctuates much more wildly as shown in Fig. 10. The 9570
confidence intervals for the estimators for a given M as well
as the required M for a given accuracy in the estimators are
discussed in [15].

B. Exponential Smoothing versus Sliding Window Averaging

Adaptive applications need to estimate the average loss rate
in an on-line manner in order to adjust to the congestion in the
network. Exponential smoothing and Sliding Window Averag-
ing are two ways to do so. The sliding window average gives
the sample mean over a sliding window, say of size M samples.
Thus only the M latest samples contribute to the current esti-

Fig. 10. Estimating the parameters = 1 – g for 20Nov97.uni-l for Memory
Sizes of 1000 and 10000
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Fig. 11. Comparison of exponential smoothhg: &fe = 2000 and slidlng
window average M = 2000 for 20Nov97.uni-1

mate ensuring that older information is not used. Restricting
the memory size is important because of non-stationarities in
the data. Exponential smoothing is a computationally quicker
method for estimating the current mean and it requires less
buffer space. The question we address is: does exponential
smoothing require more memory than sliding window aver-
aging in providing similar quality estimates. As we will see
the sliding window average is, indeed, a significantly better
estimator. For the same effective memory size, exponential
smoothing produces an estimate with more than double the
variance of the estimate produced by a sliding window esti-
mate and for the same variance, it requires more than twice as
much memory. In our analysis of the variance of the estimate
we have assumed, for simplicity, that the loss process is IID. In
the presence of correlation, the variance of the sample mean es-
timator is higher than that calculated assuming independence.

In order to compare the two styles of on-line mean estima-
tion, we first compute the effective memory size in the case of
exponential smoothing. For the binary 10SSdata, {xi }?=l, and
for a gain of a, the exponential smoothing estimator at time t
is

tit = axt + (1 – a)rht.-.l nil = ZI

Thus all the previous samples are used but the weights given to
the old samples decay geometrically with the age of the sample
relative to the latest sample.

Let the weight given to an observation, xi, at estimation time
t,where t > i,be w~. Let 1 be a given number of observations
immediately older than the observation at time tand let Wz be
the sum of the weights given to all observations as old as or
older than the observation at time t– 1.

(8)
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The effective memory,A4,, is defined as the 1 such that the
total weight given to observations as old as or older than t – 1
isrestricted to a small fraction, d, O < J < 1. That is, using
(8), ,Vf. is calculated as the 1 such that W1 = J.

M-
ln d –lnd

— (for small values of a) (9)
‘-ln(l–a)R a

For 6 = 0.01, the gain, a for a given Me, is a G 4.605 /iW,.
Tc}compare the quality of the exponential smoothing esti-

matclr to that of the sliding window average we compute its
relative efficiency defined as, its variance relative to the slid-
ing window average (which is equivalent to the sample mean
estimator). Let the population mean be 8, let the sample mean

estimator be 8 and let U2 be the population variance. Then the

variance of the sample mean estimator is E(4 – 6)2 = U2/M.
The variance of the exponential smoothing estimator rnt is

E(r?it – (3)2= a
Za + 2(1 – a)2t-1

2–a
= 02a/2

Its relative efficiency, R is the ratio of the variances

R=
E(4 – 0)2 2

E(riit – 8)2 % aM

We use (9) to calculate the gain, a (a N 4.605/M,) for a given
Me. Thus the relative efficiency, R, of the exponential smooth-
ing estimator, when Me = M (6 = 0.01) is 43.4Y0. Hence we
see twice as much variance in the exponential smoothing esti-
matc}r as we do in the sliding window average with the same
effective memory. Fig. 11 shows the difference in the variance
of the estimators for “20Nov97.uni- 1” for a memory size of
2000. The estimator values are plotted against the packet se-
quence numbers. A similar comparison between the exponen-
tial smoothing estimator with effective memory 2000 and the
sliding window averaging estimator with memory 1000 shows
almost the same variation since the exponential smoothing uses
double the memory.

VI. CONCLUSIONS AND FUTURE WORK

We presented measurements of Internet packet loss for uni-
cast and multicast connections. We analyzed the traces for sta-
tioniwity and identified 76 hours of stationary trace segments
for further analysis. The loss data was represented both as a
binary time series and as alternating sequences of good runs
and loss runs. We checked the data for temporal dependence
using both representations.

Our study of the autocorrelation function of the binary time
series representation, revealed that the correlation timescale for
these traces is 1000ms or less. The distributions of the good
run lengths and the loss run lengths were found to be approxi-
mately geometrically distributed for the 160ms traces. For the
20ms and 40ms traces, the good run lengths were found to be
not geometrically distributed, while the 10SSmn lengths were
geometrically distributed.

We examined the accuracy of three models: the Bernoulli
moc~el, the 2-state Markov chain model and the k-th order
Markov chain model, in terms of our analysis of temporal de-
pendence. For the 160ms traces, the Bernoulli model was
found to be accurate for 7 segments, the 2-state Markov model
for “1Osegments and Markov chain models of orders 2 to 6 for

the remaining 16. The Bernoulli and the 2-state Markov chain
models are not accurate for the 20ms and 40ms traces and the
estimated order of the Markov chain model ranged from 10 to
42.

For on-line loss estimation, we computed the memory size
for a given accuracy in the parameter estimate for both the av-
erage loss rate and the 2-state Markov chain model parame-
ters. Also, we found that using the sliding window average
for average loss rate estimation has advantages over exponen-
tial smoothing since it varies approximately half as much when
the same effective number of past observations are used.

A richer collection of measurements with different sampling
intervals and a variety of senders and receivers would allow a
better understanding of the temporal dependence in the loss
data, And it would be worthwhile to apply the models to pro-
tocol design and performance analysis.
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