Dynamic Forwarding Table Management for High-speed GPU-based Software Routers

Joongi Kim¹, Keon Jang¹, Sangjin Han¹, KyoungSoo Park², and Sue Moon¹
¹Department of Computer Science, KAIST, {joongi, keonjang, sangjin}@an.kaist.ac.kr, sbmoon@kaist.edu
²Department of Electrical Engineering, KAIST, kyoungsoo@ee.kaist.ac.kr

Motivation

- Software routers are gaining momentum
 - in favor of extensibility & flexibility in network packet processing.
- PacketShader achieves 40Gbps. [SIGCOMM ’10]
 - Currently the fastest software router (data-plane speed 40Gbps on a single x86 machine)
 - Next step: control-plane integration
- Will PacketShader keep up?
 - Bursting routing table updates (50-150 times/sec)
 - Large routing & forwarding tables (more than 320,000 entries and a few hundreds MB)
 - Updating forwarding tables in GPU similar to FIB updates in high-end routers

Our key insight on GPU-based software routers:
“Bursty routing table updates hurt the performance of GPU-based software routers”

Design & Ideas

- Software Architecture

 Existing software routing frameworks (e.g. XORP, Quagga)
 Forwarding engine (using GPUs)
 Forwarding table manager
 Packet API
 Linux TCP/IP stack
 Packet I/O driver

 Inside GPU
 Updating forwarding tables
 Uploading continues...

- Idea #1: Double-buffering
 - Modern GPUs have enough memory (1.5GB for GTX480) to store multiple instances of the forwarding table.

- Idea #2: Incremental FIB updates
 - They reduce bandwidth and update time.
 - The data structure for forwarding table is critical.
 - We are considering a few known methods. ([Gupta98], [Basu05], [Zhao10], [Liu10])