
Computer Networks 46 (2004) 253–272

www.elsevier.com/locate/comnet
Prefix-preserving IP address anonymization:
measurement-based security evaluation
and a new cryptography-based scheme

Jinliang Fan a,*, Jun Xu a, Mostafa H. Ammar a, Sue B. Moon b,1

a College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332, USA
b Department of Computer Science, KAIST, Guseong-Dong, Yuseong-Gu, Daejeon 305-701, South Korea

Received 27 June 2003; received in revised form 25 February 2004; accepted 1 March 2004

Available online 26 May 2004

Responsible Editor: D. Frincke
Abstract

Real-world traffic traces are crucial for Internet research, but only a very small percentage of traces collected are

made public. One major reason why traffic trace owners hesitate to make the traces publicly available is the concern that

confidential and private information may be inferred from the trace. In this paper we focus on the problem of

anonymizing IP addresses in a trace. More specifically, we are interested in prefix-preserving anonymization in which the

prefix relationship among IP addresses is preserved in the anonymized trace, making such a trace usable in situations

where prefix relationships are important. The goal of our work is two fold. First, we develop a cryptography-based,

prefix-preserving anonymization technique that is provably as secure as the existing well-known TCPdpriv scheme, and

unlike TCPdpriv, provides consistent prefix-preservation in large scale distributed setting. Second, we evaluate the

security properties inherent in all prefix-preserving IP address anonymization schemes (including TCPdpriv). Through

the analysis of Internet backbone traffic traces, we investigate the effect of some types of attacks on the security of any

prefix-preserving anonymization algorithm. We also derive results for the optimum manner in which an attack should

proceed, which provides a bound on the effectiveness of attacks in general.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Prefix-preserving address anonymization; TCPdpriv; Cryptography-based anonymization; Traffic measurement; Security;

Privacy
* Corresponding author. Tel.: +1-4048956855.

E-mail addresses: jlfan@cc.gatech.edu (J. Fan), jx@cc.

gatech.edu (J. Xu), ammar@cc.gatech.edu (M.H. Ammar),

sbmoon@cs.kaist.ac.kr (S.B. Moon).
1 This work was performed when the author was with Sprint

Advanced Techonology Laboratories.

1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2004.03.033
1. Introduction

Real-world Internet traffic traces are crucial for

network research such as workload characteriza-

tion, traffic engineering, web performance, and

more generally network performance analysis and
simulation. However, only a tiny percentage of

traffic traces collected are made public (e.g., by
ed.

mail to: jlfan@cc.gatech.edu

254 J. Fan et al. / Computer Networks 46 (2004) 253–272
NLANR/MOAT Network Analysis Infrastructure

(NAI) project [1] and ACM ITA project [2]) for

research purposes. One major reason why ISPs or

other traffic trace owners hesitate to make the

traces publicly available is the concern that the

confidential (commercial) and private (personal)
information regarding the senders and receivers of

packets may be inferred from the trace. In cases

where a trace has been made publicly available, the

trace is typically subjected to an anonymization

process before being released.

A straightforward approach to anonymizing a

packet trace is to map each distinct IP address

appearing in the trace to a random 32-bit ‘‘ad-
dress’’. The only requirement is that this mapping

be one-to-one. Anonymity of the IP addresses in

the original trace is achieved by not revealing the

random one-to-one mapping used in anonymizing

a trace. Such anonymization, however, results in

the loss of the prefix relationships among the IP

addresses and renders the trace unusable in situa-

tions where such relationship is important (e.g.,
routing performance analysis, or clustering of end-

systems [3]). It is, therefore, highly desirable for

the address anonymization to be prefix-preserving.

That is, if two original IP addresses share a k-bit
prefix, their anonymized mappings will also share

a k-bit prefix. One approach to such prefix-pre-
serving anonymization is adopted in TCPdpriv

developed by Greg Minshall [4].
In this work we first formally characterize pre-

fix-preserving anonymization functions by show-

ing that the set of such functions follow a

canonical form. TCPdpriv can be viewed as a

table-based approach that generates a function

randomly from this set. It may produce inconsis-

tent prefix-preserving anonymization (i.e., same

original prefix mapped into different anonymized
prefixes) when used independently on more than

one trace. We develop an alternative cryptogra-

phy-based, prefix-preserving anonymization tech-

nique to address this issue, and prove rigorously

that the proposed technique maintains the same

level of anonymity as TCPdpriv.

Second, we are interested in analyzing the

security properties inherent in prefix-preserving IP
address anonymization in general (whether using

TCPdpriv or the proposed scheme). We aim to
understand its susceptibility to attacks that may

reveal some IP address mappings (e.g., [5]).

Through analysis of real-world IP traffic traces, we

investigate the effect of some types of attacks on

the security of the prefix-preserving anonymiza-

tion process. In the process, we derive some results
pertaining to the optimum manner in which an

attack should proceed with the goal of under-

standing the bounds on the performance of attacks

in general.

Although our results can be used to analyze the

effect of attacks on an anonymized trace, we be-

lieve that it is outside the scope of our work to

make any conclusions regarding how ‘‘safe’’ it is to
release an anonymized trace. We stress that our

work constitutes a scientific endeavor, intended to

explore the potential and limits of prefix-preserv-

ing anonymization as a way to simultaneously

satisfy the needs of network researchers and the

concerns of trace owners. We realize that the

decision to release data, even in anonymized form,

is affected by many non-technical issues. Our role
is to provide a technical foundation for such

decision making.

The rest of this paper is organized as follows. In

Section 2 we introduce our result regarding the

canonical form of a prefix-preserving anonymiza-

tion scheme. We also describe the operation of

TCPdpriv and present our own cryptography-

based scheme. In Section 3 we describe crypto-
graphic and semantic attacks; two forms of attacks

that may potentially be used to defeat an anony-

mization scheme. Section 4 proves the immunity of

our cryptography-based anonymization scheme

from cryptographic attacks. In Section 5, we de-

velop a framework for evaluating the effects of

semantic attacks on anonymization schemes in

general (including TCPdpriv and our cryptogra-
phy-based scheme). We then use the framework to

derive numerical results demonstrating the effects

of certain attacks on real-world traces. The paper

is concluded in Section 6.
2. Prefix-preserving anonymization schemes

We begin this section with a formal definition of

prefix-preserving anonymization.

0001
0010

0000

0011

0101
0110
0111

0100

1001
1010

1000

1011

1101
1110
1111

1100

1000

1011

1110
1111

0001
0010

0000

0101
0100

Flip

Leaf Node
Do Not Flip

0010

0000

0111
0110

1101
1111

1100

1001
1000

(a) (b) (c) (d)

Fig. 1. Address trees and anonymization function: (a) address space; (b) original address tree; (c) anonymization function and

(d) anonymized address tree.

J. Fan et al. / Computer Networks 46 (2004) 253–272 255
Definition 1 (Prefix-preserving anonymization).
We say that two IP addresses a ¼ a1a2 � � � an and
b ¼ b1b2 � � � bn share a k-bit prefix (06 k6 n), if
a1a2 � � � ak ¼ b1b2 � � � bk, and akþ1 6¼ bkþ1 when

k < n. 2 An anonymization function F is defined as
a one-to-one function from f0; 1gn

to f0; 1gn
. An

anonymization function F is said to be prefix-

preserving, if, given two IP addresses a and b, F ðaÞ
and F ðbÞ share a k-bit prefix if and only if a and b
share a k-bit prefix. 3

It is useful for our future analysis to consider a

geometric interpretation of this form of anony-

mization. We first note that the entire set of pos-

sible distinct IPv4 addresses can be represented by

a complete binary tree of height 32. The set of

distinct addresses present in an unanonymized

trace can be represented by a subtree of this
complete binary tree where each address is repre-

sented by a leaf. We call this the original address

tree. Each node in this original address tree

(excluding the root node) corresponds to a bit

position, indicated by the height of the node, and a

bit value, indicated by the direction of the branch

from its parent node. Fig. 1(a) shows a complete

binary tree (using 4-bit addresses for simplicity)
and Fig. 1(b) shows an original address tree.
2 For all known packet traces, n ¼ 32, as an IPv4 address has
four bytes.

3 It is possible to use prefix-preserving in a ‘‘hybrid mode’’:

the most significant IP address bits are anonymized in a prefix-

preserving way, while the remaining bits are completely

randomized. Our theory developed thereafter applies also to

the hybrid mode, with minor adaptations.
A prefix-preserving anonymization function can

be viewed as specifying a binary variable for each
non-leaf node (including the root node) of the

original address tree. This variable specifies whe-

ther the anonymization function ‘‘flips’’ this bit

(from 1 to 0 or from 0 to 1) or keeps it untouched.

Applying the anonymization function results in

the rearrangement of the original address tree into

an anonymized address tree. Fig. 1(d) shows the

anonymized address tree resulting from the
anonymization function shown in Fig. 1(c). Note

that an anonymization function will, therefore,

consist of at least I binary variables if the original
address tree has I non-leaf nodes.
Although what we have presented is clearly a

method for prefix-preserving anonymization, it is

not immediately obvious that this is the only

method. In the following theorem, we prove that
this is indeed the only method.

Theorem 1 (Canonical form theorem). Let fi be a
function from f0; 1gi to {0,1}, for i ¼ 1; 2; . . . ; n	 1
and f0 is a constant function. Let F be a function
from f0; 1gn to f0; 1gn defined as follows. Given
a ¼ a1a2 � � � an, let

F ðaÞ :¼ a01a
0
2 � � � a0n; ð1Þ

where a0i ¼ ai � fi	1ða1; a2; . . . ; ai	1Þ, and � stand
for the exclusive-or operation, for i ¼ 1; 2; . . . ; n.
We claim that

(a) F is a prefix-preserving anonymization function
and

(b) A prefix-preserving anonymization function nec-
essarily takes this form.

256 J. Fan et al. / Computer Networks 46 (2004) 253–272
Proof. (a) Suppose two raw addresses a ¼
a1a2 � � � an and b ¼ b1b2 � � � bn share a k-bit prefix;
that is, a1a2 � � � ak ¼ b1b2 � � � bk, and, if k < n,
akþ1 ¼ bkþ1 (or equivalently akþ1 ¼ bkþ1). Then for

i ¼ 1; 2; . . . ; k
a0i ¼ ai � fi	1ða1; a2; . . . ; ai	1Þ

¼ bi � fi	1ðb1; b2; . . . ; bi	1Þ
¼ b0i

and, if k < n,

a0kþ1 ¼ akþ1 � fkða1; a2; . . . ; akÞ
¼ bkþ1 � fkðb1; b2; . . . ; bkÞ
¼ b0kþ1:

(b) This is equivalent to proving that given any

prefix-preserving function F , we can find corre-
sponding fi; i ¼ 0; 1; . . . ; n	 1 in the above form.
Given any F and any i, 06 i6 n	 1, we define fi
as follows. Given any i-bit sequence a1a2 � � � ai, we

append an arbitrary n	 i bit sequence aiþ1aiþ2 � � �
an to it. Then we define fiða1; a2; . . . ; aiÞ :¼ c, where
c is the ðiþ 1Þth bit of F ða1a2 � � � anÞ � aiþ1. It re-

mains to show that fi is well-defined: different
choices of aiþ1; aiþ2; . . . ; an lead to the same c value.
Given another sequence biþ1biþ2; . . . ; bn, we show

c ¼ c0, where c0 is computed as ðiþ 1Þth bit of
F ða1a2 � � � aibiþ1 � � � bnÞ � biþ1. We only need to

discuss following two cases:

1. When aiþ1 ¼ biþ1, F ða1a2 � � � aiaiþ1 � � � anÞ and

F ða1a2 � � � aibiþ1 � � � bnÞ should have the same

ðiþ 1Þth bit (denoted as d) since F is prefix-pre-
serving. So c ¼ d � aiþ1 ¼ d � biþ1 ¼ c0.

2. Similarly, we can show c ¼ c0 when

aiþ1 ¼ biþ1. h

Remark. Note that there is a natural one-to-one
mapping between the canonical form of a prefix-

preserving anonymization function and its graphi-

cal representation. Each node in an anonymization

tree (see Fig. 1), as represented by its prefix

a1a2 � � � ak, will be labeled ‘‘flip’’ or ‘‘no flip’’, when

f ða1a2 � � � akÞ ¼ 1 or 0, respectively.

In the following, we describe TCPdpriv, an
existing traffic anonymization tool that, among

other things, allows the prefix-preservation anony-
mization of IP addresses. We describe how TCPd-

priv implements prefix-preserving anonymization

and identify its properties. We then discuss our

cryptography-based prefix-preserving anonymiza-

tion algorithm that possesses additional function-

ality. Finally, we define metrics for the level of
security that is constrained by the prefix-preserving

requirement and show that both TCPdpriv and our

scheme achieve this same level of security.

2.1. TCPdpriv and its properties

TCPdpriv’s implementation of the prefix-pre-

serving translation of IP addresses is table-based:
it stores a set of <raw, anonymized> binding pairs

of IP addresses to maintain the consistency of the

anonymization. When a raw IP address a needs to
be anonymized, it is first compared with all the the

raw IP addresses inside the stored binding pairs for

the longest prefix match. Suppose the binding pair

whose raw address has longest prefix match with

a ¼ a1a2 � � � an is < x; y >, where x ¼ x1x2 � � � xn and
y ¼ y1y2 � � � yn, and the length of the match is k.
There are two possibilities: (a) if x ¼ a, then y is
the anonymized IP address; (b) otherwise, TCPd-

priv generates a new number b ¼ b1b2 � � � bn as the

anonymized IP address and adds < a; b > to the

binding table, where b1b2 � � � bkbkþ1 ¼ y1y2 � � � ykykþ1
and bkþ2bkþ3 � � � bn ¼ randð0; 2n	k	1 	 1Þ. Here

randðl; uÞ can be any function that generates
pseudorandom (not required to be cryptographi-

cally strong) numbers between l and u.
When a trie data structure is used, the search

for the longest prefix match has the cost of OðnÞ,
where n is the number of bits in the address. The
memory requirement of the algorithm is OðMÞ,
where M is the number of binding pairs stored. We

refer readers to the source code of TCPdpriv [4] for
the actual data structure and algorithm.

Despite the elegance and simplicity of the

TCPdpriv implementation, it does not facilitate

the parallel and distributed (yet consistent) anon-

ymization of traffic traces:

• TCPdpriv does not allow consistent distributed

processing of different traces simultaneously.
Like other prefix-preserving anonymization

functions, TCPdpriv can be mapped to the

J. Fan et al. / Computer Networks 46 (2004) 253–272 257
canonical form shown in Theorem 1. For

TCPdpriv, the functions ffig06 i6 n	1 in the

canonical form are trace-dependent: they are

determined by the raw IP addresses and the rel-

ative order in which they appear in a trace.
Therefore, a raw address appearing in different

traces may be mapped to different anonymized

addresses by TCPdpriv, hence the inconsis-

tency. 4 However, there is a real need for simul-

taneous (yet consistent) anonymization of

traffic traces in different sites, e.g., for taking a

snapshot of the Internet. It would be very cum-

bersome if hundreds of traces have to be gath-
ered first and then anonymized in sequence.

• A large trace (e.g., terabytes) may be collected

for a high-speed link for a long period of time.

For the same reason discussed above, TCPdpriv

does not allow a large trace file to be broken

down into pieces and processed in parallel con-

sistently.

2.2. A cryptography-based scheme

We have designed an algorithm that addresses

the aforementioned limitations of TCPdpriv by

deterministically mapping raw addresses to anon-

ymized addresses based on a relatively small key

(compared to the M-entry binding table), which
facilitates distributed and parallel anonymization
of traffic traces. We show that the algorithm is

provably secure up to the level of security a prefix-

preserving anonymization could possibly deliver.

Based on the canonical form in Theorem 1, our

cryptography-based scheme is defined as instanti-

ating functions fi in (1) with cryptographically
strong stream ciphers or block ciphers as follows:

fiða1a2 � � � aiÞ :¼ LðRðPða1a2 � � � aiÞ; jÞÞ; ð2Þ
where i ¼ 0; 1; . . . ; n	 1 and L returns the ‘‘least

significant bit’’. Note that we are able to specify

this scheme in such a succinct way thanks to the

formulation and proof of Theorem 1. Here R is a
4 TCPdpriv may be modified to allow the binding table used

in one anonymization session to be saved and used in another

session for consistent anonymization. However, the binding

table is large and can be cumbersome for distribution. Also the

anonymization process still has to be serialized.
pseudorandom function or a pseudorandom per-

mutation (i.e., a block cipher) such as Rijndael [6],

and P is a padding function that expands

a1a2 � � � ai into a longer string that matches the

block size of R. j is the cryptographic key used in
the pseudorandom function R. Its length should
follow the guideline (e.g., between 128 and 256 bits

in 32-bit steps in Rijndael) specified for the pseu-

dorandom function that is actually adopted.

As we can see from (2), the cryptography-based

anonymization function is uniquely determined by

j. In other words, a raw address appearing in two
different traces will be mapped to the same anon-
ymized address if the same key is used to anony-

mize both traces. So, for consistent distributed

anonymization of multiple traces, the j needs to be
distributed to various hosts or sites where the

anonymization will occur. A secure key distribu-

tion scheme (such as [7–9]) suitable for the specific

requirements (e.g., scalability) of an organization

can be used for this purpose.
The new scheme is designed to be generic: any

secure stream and block ciphers, which can be

modeled as pseudorandom functions (PRF) or

pseudorandom permutations (PRP), may be used

in place of R. In the following section, we char-
acterize the best possible security level of F and

show that it is provably secure (up to that level)

based on the assumption thatR is a PRF (PRP is a
special case of PRF).

We implemented our scheme by instantiating R
with Rijndael, a secure block cipher that has been

adopted by NIST as AES [6]. As a block cipher,

Rijndael can be modeled as strong pseudorandom

permutation [10–12], which is the base assumption

for provable security of our scheme. We found

that the scheme can process 10,000 packets per
second on a 800 MHz Intel Pentium III processor,

fast enough for practical purposes. This speed can

be doubled if the scheme precomputes and stores

the anonymization result for the first 16 bits,

costing 128 KB. 5 Note that since this cache is
5 Storing such intermediate results in a software cache with

appropriate replacement policies (e.g., LRU) may result in even

higher improvement on the overall anonymization speed, when

there is a decent amount of locality [13] in the trace. However,

such improvement can be highly trace-dependent.

258 J. Fan et al. / Computer Networks 46 (2004) 253–272
deterministicly generated from the key, it will not

interfere with parallel and distributed execution of

the scheme.
3. Attacking prefix-preserving anonymization

In this section, we discuss two possible ways in

which our scheme may be attacked. An intruder is

assumed to have compromised (gain full knowl-

edge to) the bindings between certain number of

raw and anonymized address pairs through means

other than compromising the key (i.e., the known

plaintext attack model). We identify the following
two types of the attacks: the first affects only our

scheme and the second affects TCPdpriv and our

scheme to the same extent.

• Cryptographic attack. Aided by the knowledge

of the compromised raw-anonymized address

pairs, the intruder tries to infer the crypto-

graphic key used in the anonymization algo-
rithm (j in (2)) using all possible cryptanalysis
techniques. TCPdpriv is not susceptible to this

attack.

• Semantic attack. Without compromising the

cryptographic keys, the attacker may still be

able to infer a part of (typically a prefix) or even

whole unanonymized addresses from an anony-

mized address by exploiting the semantics of
prefix-preserving and traditional cryptanalysis

techniques such as frequency analysis. This pro-

cess can again be aided by the knowledge of the

compromised addresses. Note that the semantic

attack is inherent with the prefix-preserving

anonymization scheme: all prefix-preserving

schemes (including TCPdpriv and our scheme)

are subject to this type of attack to the same
degree.

We will prove that the security of our scheme

against cryptographic attack depends solely on the

strength of the pseudorandom function used in its

construction (R in (2)). It is not dependent on the

data that is anonymized. The robustness of our

scheme against semantic attack, on the other hand,
is dependent on certain ‘‘entropy’’ property that

may vary from trace to trace. Therefore, it is as-
sessed by measuring such properties on specific

traces.

In the sequel we study both attacks in detail. In

Section 4 we show that our scheme is provably

secure against cryptographic attack. In Section 5,

we investigate the effectiveness of semantic attacks
through measurements on real unanonymized

packet traces.
4. Security analysis of cryptographic attack

In this section, we prove that our scheme de-

fined by (1) and (2) achieves the highest level of
security achievable by prefix-preserving schemes

when the adversaries are assumed to be compu-

tationally bounded. In stating the theorems and

the proofs, we follow the standard notions of

security and proof techniques in the provable

security literature [14,15].

We first characterize the highest level of security

achievable by any prefix-preserving anonymization
scheme. Suppose that a set of N anonymized ad-

dresses S have been compromised. Given an arbi-
trary anonymized address b (fixed after it is

chosen), suppose k is the longest prefix match be-
tween b and the elements in S. Then, due to the
prefix-preserving nature of the anonymization

algorithm, the first ðk þ 1Þ bits of the corre-
sponding raw address, referred to as a, are re-
vealed as mentioned before. The highest level of

security that can be achieved is then to ensure that

the remaining ðn	 k 	 1Þ bits are indistinguishable
from random bits to adversaries.

In order to formalize this concept we first

introduce the following definitions.
Definition 2 (adapted from [16]). Suppose p0 and
p1 are two probability distributions on the set
f0; 1gl

, bit strings of length l. Let A : f0; 1gl !
f0; 1g be a probabilistic (randomized) algorithm.
Let � > 0 and two random variables X0 and X1 have
distributions p0 and p1, respectively. We say that
A is an �-distinguisher of p0 and p1 provided
that jPrðAðX0Þ ¼ 1Þ 	 PrðAðX1Þ ¼ 1ÞjP �. We say
that p0 and p1 are �-distinguishable if there exists an
�-distinguisher of p0 and p1.

J. Fan et al. / Computer Networks 46 (2004) 253–272 259
Definition 3. We call a function F : U ! V to be

ðq; t; �Þ-pseudorandom, when there is no algorithm
A that, given any x 2 U at A’s choice, can be an �-
distinguisher between the uniform distribution on

V and the distribution of F ðxÞ. Here A is allowed
to use F as an oracle on q points of its choice
different from x and spends no more than t com-
putation time. Note here that the distribution of

F ðxÞ is induced by the distribution of F in function
space. So, equivalently, we can say that the func-

tion F is �-indistinguishable from a random func-
tion, which can be viewed as a random variable

uniformly distributed in the set of all functions
from U to V .

With the above definitions in mind a prefix-

preserving scheme can be said to attain its highest
level of security if the algorithm F is indistin-

guishable from a random prefix-preserving func-

tion, a function uniformly chosen from the set of

all prefix-preserving functions.

We prove in Theorem 2 that the cryptography-

based scheme achieves the aforementioned level of

security when the adversaries are assumed to be

computationally bounded. In contrast, in TCPd-
priv, this indistinguishability is achieved in the

information-theoretical sense: the adversary does

not need to be computationally bounded. This,

however, comes at the cost of maintaining a large

binding table (essentially a one-way pad).

Given (S, N , b, a, k) as defined in the second
paragraph of this section and a ¼ a1a2 � � � an, we

define eF : f0; 1gn	k	1 ! f0; 1gn	k	1
in which eF ðxÞ

is defined as the last ðn	 k 	 1Þ bits of F ða1a2 � � �
akþ1kxÞ. Here F is defined as in (1), x 2 f0; 1gn	k	1

,

and ‘‘k’’ represents concatenation.

Theorem 2. Given the knowledge of compromised
addresses S, if the function R in (2) is a
ð32 � ðN þ 1Þ; t; �=ð2n � nÞÞ-pseudorandom function,
then eF 	1 is a ð0; t; �Þ-pseudorandom function. In
other words, given any y 2 f0; 1gn	k	1, the distri-
bution of eF 	1ðyÞ is not �-distinguishable from uni-
form distribution on f0; 1gn	k	1 for all algorithms A
that runs for no more than t time.

Proof. Since R is a ð32 � ðN þ 1Þ; t; �=ð2n � nÞÞ-
pseudorandom function, by Lemma 1, eF is a
ð0; t; �=2nÞ-pseudorandom function. Then by

Lemma 2, this implies that eF 	1 is a ð0; t; �Þ-pseu-
dorandom function. h

For better continuity of text, we state without
the proof the lemmas used in proving Theorem 2.

Their detailed proofs are in Appendix A.

Lemma 1. If R is a ð32 � ðN þ 1Þ; t; �=nÞ-pseudo-
random function, then eF is a ð0; t; �Þ-pseudorandom
function even with the knowledge of S.

Lemma 2. If a permutation G : V ! V is a ð0; t; �Þ-
pseudorandom function, then G	1 is a ð0; t; �jV jÞ-
pseudorandom function.

Remark. If the only assumption about G is that it
is a pseudorandom function, then this bound of

ð�jV jÞ for G	1 is indeed tight. An instance where

this bound is tight is shown in the remark after the

proof of Lemma in Appendix A.

In this section, we formally characterize the

notion of provable security (Definitions 2 and 3)
in our context: indistinguishability between our

anonymization function and a random prefix-pre-

serving function to a computationally constrained

adversary (with no more than t computation time).
We prove rigorously that our scheme is secure

against cryptographic attacks based on this notion

of provable security. In the next section, we pro-

ceed to explore the security of our scheme and
TCPdpriv against semantic attacks.
5. Evaluation of the effects of semantic attacks

In this section, we study the security of prefix-

preserving anonymization against semantic at-

tacks. Since the risk of semantic attacks is inherent
with all prefix-preserving anonymization schemes,

the findings of this study apply to all schemes,

including ours and TCPdpriv. Our goal here is

to provide a framework for evaluating the pri-

vacy risks in releasing an anonymized trace so that

trace owners may be better equipped to make

informed decisions about releasing anonymized

traces.

6 The NLANR trace is an destination-IP-address-only trace.

260 J. Fan et al. / Computer Networks 46 (2004) 253–272
The security implications of prefix-preserving

anonymization of traffic traces using TCPdpriv [4]

are briefly studied in [5] and [17]. Here we offer a

more formal approach to characterize the security

of prefix-preserving anonymized traces against

semantic attacks. Our contribution is summarized
as following:

1. We provide a framework (including a set of

metrics) for evaluating the effect of attacks on

anonymized traces. The framework assumes

that an attack is characterized by the number

of address mappings that are compromised

and by properties that compromised addresses
may have (e.g., random, all DNS addresses or

frequently-occurring addresses).

2. We study two unrealistic but theoretically inter-

esting attacks: an attack that compromises a

random set of addresses and one that compro-

mises the same number of addresses optimally.

We show that an evaluation of the damage of

the two attacks on a specific trace can generally
measure the inherent resistance of the trace

against general semantic attacks. Our evalua-

tion on real traces shows that the damage can

be trace-specific. This means that no blanket

statements can be made regarding the safety

of releasing traces but rather each case needs

to be evaluated on its own merits.

3. We show that two realistic attacks: using fre-
quency analysis and compromising all DNS ser-

ver addresses, yield as much damage as a small

number of randomly compromised addresses.

We also discuss the feasibility and likely effec-

tiveness of other more elaborated attacks.

5.1. Metrics to measure effect of attacks

When we study the security of an anonymized

trace, we would like to measure the amount of

information that is leaked from or kept untouched

in the whole trace as a consequence of compro-

mising some address mappings. Note that the

specifics of the attack by which address mappings

have been compromised is not important, and

what ultimately matters is the result of the attack,
i.e., the number of compromised addresses and

their properties.
In this section we define three metrics to mea-

sure the effect of attacks on anonymized traces.

Each measure reflects a different security concern.

The number of unknown compressed bits, C.
When some address mappings are compromised,

the states of some nodes of the anonymization

function (see Fig. 1) are revealed and the anony-

mization function is partially compromised. This

leads to the definition of C as the total number of
nodes in the anonymization function whose states

are not known. Note that C corresponds to the

entropy of the anonymization function after the

attack.

The number of unknown uncompressed bits, U .
Another concern is the security state of the

anonymized addresses. When some address map-

pings are compromised, all the bits in the com-

promised addresses are revealed. In addition and

due to the prefix-preserving nature of the anony-

mization algorithm, certain bits in other addresses

are also revealed. This leads to the definition of U
as the sum of all bits that are not known over all
addresses.

The number of addresses with exactly i known
most significant bits, Fi. Neither C nor U describe

exactly where bits have been revealed. We, there-

fore, measure Fi defined as the total number of

addresses that has exactly i most significant bits
known, where 06 i6 32.

5.2. An evaluation of the effect of attacks on real

traces

Recall that we model the effect of an attack by

the number of compromised addresses and the

properties associated with them. In this section we

consider the effect of compromising N addresses

chosen either randomly or according to a greedy
algorithm (which we prove is optimal for some

measures).

We present results based on a trace from Tier-1

ISP link and a publicly available one from

NLANR [18]. Note that both traces contain real

(unanonymized) IP addresses. 6 The properties of

the two traces are shown in Table 1.

Table 1

Example traces

Tier-1 ISP NLANR [18]

Type Full header Destination IP only

Location Packet-Over-SONET OC3 link N/A

Start time 09:56 PDT 8/9/2000 N/A

End time 19:56 PDT 8/9/2000 N/A

Size 50 GB binary 930 MB ASCII

Number of packets 567,680,718 31,518,464

Number of distinct addresses 1,423,937 130,163

1

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

0 5 10 15 20 25 30

N
um

be
r

O
f N

od
es

Level

Address Tree
Full Tree

1

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

0 5 10 15 20 25 30

N
um

be
r

O
f N

od
es

Level

Address Tree
Full Tree

(a) (b)

Fig. 2. Shape of address trees: (a) NLANR IP address trace and (b) Tier-1 ISP IP header trace.

J. Fan et al. / Computer Networks 46 (2004) 253–272 261
Fig. 2(a) shows the number of nodes in each
level of the original address tree built from the

NLANR trace. The figure shows that the number

of nodes increases when the level increases. It also

shows that the tree is quite dense on the top but

becomes sparser as it progresses towards the leaves

representing the IP addresses. Similar figures are

obtained from the Tier-1 ISP trace and are shown

in Fig. 2(b).

5.2.1. Effect of compromising random addresses

We first consider the effect of compromising a

random number of addresses. Fig. 3(a)–(c) is the

simulation results on the NLANR trace and show

how U and C decrease as the number of compro-
mised IP addresses increases. The results are ob-

tained by randomly choosing a certain number of
addresses from the NLANR trace and evaluating

the C and U measures assuming they are com-

promised. This is repeated 10 times and the graphs

represent the mean of the results. Fig. 3(b) and (c)

magnify the portion of Fig. 3(a) when the number
of compromised IP addresses ranges from 0 to
3000 and 0 to 300, respectively.

We can see in the graphs that the value of C
drops almost linearly with respect to the number

of compromised IP addresses, which means the

anonymization function is quite resistant to the

attacks. The value of U drops very fast initially

and flattens out. This implies that an ordinary

address has a very high probability to have several
of its 32 bits revealed (prefix bits) but a low

probability to have a large number of them re-

vealed.

Fig. 3(d)–(f) is the simulation results on the

NLANR trace and show Fi, the number of ad-

dresses who have had exactly imost significant bits
revealed, for i ¼ 0; . . . ; 32 and various values of N .
Fig. 3(e) and (f) magnify the portion of Fig. 3(d)
when the number of compromised IP addresses

ranges from 1 to 3000 and 1 to 300, respectively.

The ridge in Fig. 3(d) shows that the effect of

the attack is relatively low when the total number

of compromised address mappings is a small

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000 40000 60000 80000 100000 120000 140000

U
 a

nd
 C

 C
ou

nt
s

(u
ni

t=
10

00
)

Number of Compromised Addresses

U
C

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000

U
 (

un
it=

10
00

)

U

1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070

0 500 1000 1500 2000 2500 3000

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C

2400
2600
2800
3000
3200
3400
3600
3800
4000
4200

0 50 100 150 200 250 300

U
 (

un
it=

10
00

)

U

1061
1062
1063
1064
1065
1066
1067
1068

0 50 100 150 200 250 300

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C

(a) (b) (c)

0
20000

40000
60000

80000
100000

120000

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
20000
40000
60000
80000

100000
120000
140000

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
5000

10000
15000
20000
25000
30000
35000
40000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
5000

10000
15000
20000
25000
30000
35000
40000

Fi

(d) (e) (f)

Fig. 3. Measurement of U , C and F after attacks on the NLANR trace resulting in randomly chosen compromised addresses: (a)–(c)
are measurements of U and C, (b) and (c) magnify (a) at the portion of x range 0–3000 and 0–300, respectively; (d)–(f) are the
measurements of F , (e) and (f) magnify (d) at the portion of x range 1–3000 and 1–300, respectively.

262 J. Fan et al. / Computer Networks 46 (2004) 253–272
proportion of the total number of addresses, e.g.,

no more than 20,000 out of 130,163. The ridge in

Fig. 3(e) shows that most addresses have around

16 bits compromised when there are approxi-

mately 2000 addresses compromised. This could

mean that privacy is preserved in situations where

the least significant 16 bits are more important for

personal privacy than the most significant 16 bits.
Similarly, the ridge in Fig. 3(f) is centered around

the 12-bit line.

The Tier-1 ISP trace contains many more dis-

tinct addresses than the NLANR trace does, the

simulation on the Tier-1 ISP trace, however,

exhibits similar trends as shown in Fig. 4. In Fig. 4,

the U curve drops faster and the F ridge spreads
wider up along y-axis than they do in Fig. 3. This
suggests that the Tier-1 ISP trace is not as resistant

to semantic attacks as the NLANR trace is.

5.2.2. Effect of compromising greedily-generated

addresses

A surprising result is that a greedy algorithm,

which chooses at each step an address that causes

the greatest single-step reduction in U or C value,
actually generates the optimal sequence of com-
promised addresses. That is, for any N > 0, a se-
quence of N addresses generated by the greedy

algorithm cause the maximum reduction in U (or

C) among all sets of N compromised addresses.

Since the formal formulation of the greedy algo-

rithm and its optimality proof is very involved, for

better continuity of text, we move it to Appendix B.

Fig. 5 shows simulation results demonstrating
the effect of an attack on the Tier-1 ISP trace as a

function of the number of addresses compromised

and assuming the attacker can choose these ad-

dresses to minimize U .
Comparing the figures in Fig. 5 with those in

Fig. 4 we see that for the U and C measures, the

effect of compromising some number of addresses

randomly is similar to the effect of compromising
an optimally chosen set of addresses. For this

trace, this indicates the strategy of compromising

addresses at random can be almost as effective as

the optimal strategy.

5.3. Results on two specific attacks

As mentioned earlier, we have chosen to char-
acterize attacks by the number and property of

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200000 400000 600000 800000 1e+06 1.2e+061.4e+061.6e+06

U
 a

nd
 C

 (
un

it=
10

00
)

Number of Compromised Addresses

U random
U greedy

C random
C greedy

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000

U
 (

un
it=

10
00

)

U random
U greedy

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C random
C greedy

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300

U
 (

un
it=

10
00

)

U random
U greedy

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C random
C greedy

(a) (b) (c)

0
200000

400000
600000

800000
1e+06

1.2e+06
1.4e+06

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
50000

100000
150000
200000
250000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000

Fi

(d) (e) (f)

Fig. 5. Measurement of U , C and F after attacks on the Tier-1 ISP trace resulting in U -optimal greedy set of compromised addresses:
(a)–(c) are measurements of U and C, (b) and (c) magnify (a) at the portion of x range 0–3000 and 0–300, respectively; (d)–(f) are the
measurements of F , (e) and (f) magnify (d) at the portion of x range 1–3000 and 1–300, respectively.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200000 400000 600000 800000 1e+06 1.2e+061.4e+061.6e+06

U
 a

nd
 C

 C
ou

nt
s

(u
ni

t=
10

00
)

Number of Compromised Addresses

U
C

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000

U
 (

un
it=

10
00

)

U

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

un
it=

10
00

)
Number of Compromised Addresses

C

24000
26000
28000
30000
32000
34000
36000
38000
40000
42000
44000
46000

0 50 100 150 200 250 300

U
 (

un
it=

10
00

)

U

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C

(a) (b) (c)

0
200000

400000
600000

800000
1e+06

1.2e+06
1.4e+06

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
50000

100000
150000
200000
250000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000

Fi

(d) (e) (f)

Fig. 4. Measurement of U , C and F after attacks on the Tier-1 ISP trace resulting in randomly chosen compromised addresses: (a)–(c)
are measurements of U and C, (b) and (c) magnify (a) at the portion of x range 0–3000 and 0–300, respectively; (d)–(f) are the
measurements of F , (e) and (f) magnify (d) at the portion of x range 1–3000 and 1–300, respectively.

J. Fan et al. / Computer Networks 46 (2004) 253–272 263
the addresses they reveal. We have considered

randomly-chosen and optimally-chosen addres-

ses. We now consider what happens when the
set of addresses have properties that derive

from a specific attack. We consider two types

of attacks that have been mentioned in the

1

32

1024

32768

1.05e+06

3.36e+07

1 32 1024 32768 1.05e+06 3.36e+07

N
um

be
r

of
 O

cc
ur

re
nc

e
(lo

gs
ca

le
)

Ranks of Addresses (logscale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

50 100 150 200 250 300

N
um

be
r

of
 O

cc
ur

re
nc

e

Ranks of Addresses

24000
26000
28000
30000
32000
34000
36000
38000
40000
42000
44000
46000

0 50 100 150 200 250 300

U
 (

un
it=

10
00

)

U random
U most frequent

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C random
C most frequent

50

100

150

200

250

Number of
Compromised

Addresses
5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000
300000
350000
400000

Fi

(a) (b)

(c) (d)

Fig. 6. Effect of frequency analysis attack on Tier-1 ISP trace.

7 This assumption is quite questionable though. Not all DNS

servers allow listing of their downstream servers for security

reasons. This makes it difficult to get the topology of the DNS

hierarchy and we have not seen any such topology publicly

available.

264 J. Fan et al. / Computer Networks 46 (2004) 253–272
literature [5]: frequency analysis and DNS server

tracing.

5.3.1. Frequency analysis

IP addresses of popular sites can be inferred
from their high frequency of occurrence in an

anonymized trace. Fig. 6(a) shows the frequency

that different addresses occur in the Tier-1 ISP

trace. Addresses are sorted by their frequency of

occurrence from left to right. Fig. 6(b) magnifies

the portion of Fig. 6(a) for the 300 most frequent

addresses. These figures show that only a small

number of addresses (in the tens) are actually
distinguishable from others by their frequency of

occurrence.

In Fig. 6(c) and (d), we show the U , C and F
values assuming the N most-frequently-occurring

addresses are compromised as N varies. Fig. 6(c)

shows that compromising the most frequent 300

addresses has the same effect on U as compro-

mising about 40 randomly chosen addresses. Fig.
6(d) shows that compromising frequently occur-

ring addresses has a more localized effect, that is,

affecting mainly the most significant bits (compare

with Fig. 4). According to these results, frequency

analysis, by itself, does not appear to be a serious
threat to this Tier-1 ISP trace.

5.3.2. DNS server address tracing

The IP addresses of DNS servers may be in-

ferred from the hierarchical relationship among

them. Starting with a root DNS server, an attacker

can trace down the DNS server hierarchy based on

their protocol-defined relationship in the anony-
mized trace, assuming the attacker has enough

knowledge about the DNS server hierarchy. 7

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200000 400000 600000 800000 1e+06

N
um

be
r

of
 U

ni
qu

e
D

N
S

 S
er

ve
r

A
dd

re
ss

es

Number of Unique Addresses

dns

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 5000 10000 15000 20000 25000 30000 35000 40000

 U
 (

un
it=

10
00

)

U random
U DNS server random

6800
6850
6900
6950
7000
7050
7100
7150
7200
7250

0 5000 10000 15000 20000 25000 30000 35000 40000

 C
 (

un
it=

10
00

)

Number of Compromised Addresses

C random
C DNS server random

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000

U
 (

un
it=

10
00

)

U random
U DNS server random

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

un
it=

10
00

)

Number of Compromised Addresses

C random
C DNS server random

0

500

1000

1500

2000

2500 5
10

15
20

25
30

i

0
50000

100000
150000
200000
250000

Fi

Number of
Compromised

Addresses

(a) (b)

(c) (d)

Fig. 7. Effect of DNS server tracing attack on Tier-1 ISP header trace.

J. Fan et al. / Computer Networks 46 (2004) 253–272 265
Fig. 7(a) shows the number of DNS server

addresses that appear in a portion of the Tier-1

ISP trace as a function of the number of distinct

addresses, as we consider more and more records

in the trace. This figure shows that a proportion

in the range of 1/15–1/40 of distinct addresses in
the Tier-1 ISP trace are DNS server addresses,

depending on where the trace is cut. Referring

back to Fig. 4, it can be seen that compromising

this many random addresses represents a signifi-

cant risk to the anonymization process. This

might lead one to conclude that an attack that

reveals the mapping of all DNS server addresses

in the trace will essentially ‘‘break’’ the anony-
mization process. But this is somewhat misleading

since the DNS server addresses are not really

random. We investigate this matter further in Fig.

7(b) which also derives from the Tier-1 ISP trace.

In the figure we show the value of U and C as a

function of the number of compromised addresses
when these compromised addresses are drawn at

random from the set of all addresses and when

they are drawn at random from the set of DNS

server addresses. The figure shows that for the

same number of compromised addresses the at-

tacker can reveal more ‘‘bits’’ if the addresses
were chosen at random from the entire set of

addresses as opposed to the set of DNS server

addresses. In fact, compromising all 35,903 DNS

server addresses is equivalent to compromising a

set of only approximately 3500 random addresses.

More close-up results are shown in Fig. 7(c) and

(d), which are the U , C, F curves for 0–3000

randomly-chosen compromised DNS server ad-
dress mappings. These results suggest that, for

this trace, an attack that reveals DNS server ad-

dresses is perhaps not as serious as one would

expect and that in fact an attack that can reveal

much fewer random addresses would be more

effective.

8 Otherwise, it is straightforward for an intruder to infer the

true identifies of a large portion of IP prefixes by studying their

length or common-prefix relationship. In addition, routing

tables of ‘‘nearby’’ routers should also be kept secret, since they

can be similar.

266 J. Fan et al. / Computer Networks 46 (2004) 253–272
5.4. Miscellaneous attacks

In addition to the frequency analysis and DNS

tracing attacks we discussed in the previous sec-

tion, we also study other types of attacks that may
pose threats to prefix-preserving anonymization

schemes. Note, however, that our results here are

preliminary and still a topic of further research.

• Active attacks. This type of attack also affect
non-prefix-preserving address anonymization

schemes. In this attack, an intruder simply in-

jects some ‘‘probing packets’’ into the network,

and hopefully gets them recorded and anony-

mized in the trace. Assume that the intruder

keeps a copy of the injected packets, he/she will

be able to recover bindings between unanony-

mized and anonymized addresses later when
the trace is released. This type of attack is very

hard to counter, since it can be made highly ro-

bust: the destination (victim) IP address can be

encoded into fields such as port numbers and

packet length. Detection of this attack is also

tricky since to a certain extent it can be viewed

as a covert channel problem [19]. Keeping infor-

mation such as when and where the trace will be
gathered secret seems to be the best defense

against such attacks. This, however, still can

not thwart an intruder that performs probing

continuously over a long period of time.

• Port scanning. Port scanning is the standard

technique for an intruder to identify an Internet

host for potential break-in. It does so by ‘‘scan-

ning’’ a subnet for a specific service (port num-
ber) that is vulnerable to intrusion. The IP

addresses to be scanned often advance in a step

of 1 (i.e., A;Aþ 1;Aþ 2; . . .). Though such an
attack does not target our anonymization pro-

cess, it may still pose a serious threat. That is,

if the intruder recognizes port scan in the trace,

and if A’s anonymized version is compromised
from the trace, Aþ 1;Aþ 2; . . . will also be re-
vealed. Fortunately, intrusion detection soft-

ware (e.g., [20]) for detecting port scanning is

available. The unanonymized trace can be first

filtered by such software before being anony-

mized. We are currently measuring the amount

(percentage) of port scanning traffic that is con-
tained in our traces to understand the effect of

filtering such traffic from a trace.

• Routing table inference. In some routing perfor-

mance research, trace data and a relevant rout-

ing table may need to be released together. This
can be done by anonymizing the IP prefixes in

the routing table using the same key as trace

anonymization. Note that prefix-preserving

anonymization can be applied to IP prefixes of

any length. In this case, it is very important that

the plaintext routing table (also routing tables

of ‘‘nearby’’ routers, which can be similar) be

kept secret. 8 We also note that we only need
to anonymize and release the routing table en-

tries that the traffic trace has actually accessed,

which will make it even harder for the intruder

to infer useful information from the anony-

mized routing table. We experimented our 50

GB Tier-1 ISP trace, and found that our trace

matches only 2988 out of 45,008 prefixes in

the routing table that came with it.
6. Summary of our work

Our work mainly consists of two parts. In the

first part, we characterize the prefix-preserving IP

address anonymization using a canonical form,

and propose a new cryptography-based scheme.
Unlike TCPdpriv, our scheme is suitable for

(consistent) parallel and distributed anonymiza-

tion of traffic traces. We prove rigorously that our

scheme is secure up to the level a prefix-preserving

scheme could possibly deliver. We implemented

the scheme and evaluated its performance on real

traffic traces (10,000 packets per second using Ri-

jndael). In the second part of our work, we first
propose a framework (including a set of metrics)

for evaluating the effect of attacks on anonymized

traces. Using this framework, we study the effect of

two well-known attacks, frequency analysis and

J. Fan et al. / Computer Networks 46 (2004) 253–272 267
DNS tracing, on two real-world traffic traces. We

also formally characterize the optimal fashion

(greedy algorithm) in which an attacker should

compromise a subset of anonymized addresses. We

show that compromising an optimal set of N ad-

dresses is almost as effective as randomly com-
promising N addresses. Finally, we found that the

damage caused by an attack can be very much

trace specific and no blanket statements can be

made regarding the safety of releasing traces but

rather each case needs to be evaluated on its own

merits.
Appendix A. Proofs of Lemmas 1 and 2

In this appendix, we offer detailed proofs of

Lemmas 1 and 2 (introduced in Section 4). For

simplicity of discussion, we use Ui to denote uni-

form distribution on f0; 1gi
. As a convention,

random variables and algorithms will be denoted

by capital letters and fixed values by lower-case
letters. We use ‘‘¼dist’’ to denote that two ran-

dom variables are equal in distribution. Again,

recall that n denotes the number of bits in an IP
address.

Proof of Lemma 1. We prove the contrapositive.

Suppose eF is not a ð0; t; �Þ-pseudorandom func-

tion. Then there is an algorithm A, which picks an
s 2 f0; 1gn	k	1

at its choice, can be an �-distin-
guisher between eF ðsÞ and the uniform distribution
on f0; 1gn	k	1

. Also, A uses no more than t com-
putation time. We need to show if such A exists,
then R is not a ð32 � ðN þ 1Þ; t; �Þ-pseudorandom
function.

We define eFi : f0; 1gn	k	1 ! f0; 1g in which eFiðxÞ
is the ith bit of eF ðxÞ for any x, 16 i6 n	 k 	 1. Let
Ui; i ¼ 1; 2; . . . ; n	 k 	 1 be random variables with
uniform distributions on f0; 1gi

, i ¼ 1; 2; . . . ; n	
k 	 1, respectively. We define random variables

Yi, 06 i6 n	 k 	 1. For each Yi, given an outcome

x in the probability space, YiðxÞ :¼ eF1ðsÞðxÞ
keF2ðsÞðxÞk � � � eFiðsÞðxÞkUn	k	1	lðxÞ, i ¼ 1; 2; . . . ;
n	 k 	 1. Then Lemma 3 shows that there exists l,
16 l6 n	 k 	 1 such that there is a distinguisher
algorithm B that satisfies jPrðBðYl	1Þ ¼ 1Þ	
PrðBðYlÞ ¼ 1ÞjP �=ðn	 k 	 1Þ. However, as we
will show next, this will imply that R can not be a

ð32 � ðN þ 1Þ; t; �Þ-pseudorandom function.

Recall that eF ðxÞ is defined as the last n	 k 	 1
bits of F ða1a2 � � � akþ1kxÞ, where a :¼ a1a2 � � � an.

We construct an algorithm C that picks D :¼
PADða1a2 � � � akþ1s1s2 � � � slÞ and tries to distinguish
the distribution of RðD; keyÞ from U 128 (uniform

distribution on the range of R). Given an input
X 2 f0; 1g128, C first uses Rð�; keyÞ as an oracle
32 � N times to obtain S (the N pairs of com-

promised IP addresses) using (2). Then C usesR as
an oracle l	 1 more times to obtain eFiðsÞ,
i ¼ 1; 2; . . . ; l	 1. Then C constructs a random

variable Y on f0; 1g128 as follows. Given an out-
come x in the probability space, Y ðxÞ’s first l	 1
bits are eF1ðsÞ eF2ðsÞ � � � eFl	1ðsÞ, its lth bit is LSBðX Þ,
and its last n	 k 	 1	 l bits are Un	k	1	lðxÞ. Fi-
nally, C returns BðY Þ as the result. It is not hard to
verify that (a) if X has the distribution RðD; keyÞ
then Y has the distribution of Yl and (b) if X
has the distribution U 128 then Y has the distribu-
tion of Yl	1. Therefore jPrðCðRðD; keyÞÞ ¼ 1Þ	
PrðCðU 128Þ ¼ 1Þj ¼ jPrðBðYlÞ ¼ 1Þ 	 PrðBðYl	1Þ ¼
1ÞjP �=ðn	 k 	 1Þ > �=n. This shows that C is an
ð�=nÞ-distinguisher between the distribution of

RðD; keyÞ and U 128. Also, C has made no more

than 32 � ðN þ 1Þ oracle calls and uses no more
than t time (evaluating BðY Þ). This contradicts the
assumption that R is a ð32 � ðN þ 1Þ; t; �=nÞ-pseu-
dorandom function. h

In the following we introduce a variation of a

standard lemma used in developing the concept of

pseudorandom number generator [16]. The origi-

nal idea behind this proof is attributed to Yao [21].

Let p0 and p1 be two probability distributions on
f0; 1gm

. Let X0 and X1 be two random variables of
distribution p0 and p1, respectively. We define
mþ 1 random variables Yi, i ¼ 0; 1; . . . ;m on the

set f0; 1gm
as follows. Given an outcome x in

probability space, YiðxÞ :¼ (the first i bits of
X0ðxÞ) k (the last m	 i bits of X1ðxÞ).
Lemma 3 (Hybrid argument). If p0 and p1 are �-
distinguishable, then there exists l, 16 l6m such
that the distribution of Yj	1 and the distribution of Yj

are ð�=mÞ-distinguishable.

268 J. Fan et al. / Computer Networks 46 (2004) 253–272
Proof. It is not hard to verify that Y0 ¼dist X1 and
Ym ¼dist X0. Suppose A is a �-distinguisher between
X0 and X1. Then jPrðAðX0Þ ¼ 1Þ 	 PrðAðX1Þ ¼
1ÞjP �. However, PrðAðX0Þ ¼ 1Þ 	 PrðAðX1Þ ¼
1Þ ¼

Pm
i¼1 ðPrðAðYi	1Þ ¼ 1Þ 	 PrðAðYiÞ ¼ 1ÞÞ. So

according to the triangle inequality, jPrðAðX0Þ ¼
1Þ 	 PrðAðX1Þ ¼ 1Þj 6

Pm
i¼1 jðPrðAðYi	1Þ ¼ 1Þ	

PrðAðYiÞ ¼ 1ÞÞjð�Þ. Therefore, there must exist j,
16 j6m such that jPrðAðYj	1Þ ¼ 1Þ 	 PrðAðYjÞ ¼
1ÞjP �=m, since otherwise (�) will not hold. h

Proof of Lemma 2. We prove the following con-

trapositive. Suppose G	1 is not a ð0; t; �jV jÞ-pseu-
dorandom function. Let UV denote the uniform

distribution on V . Then there is an algorithm A,
which picks a y0 at its choice, such that

PrðAðG	1ðy0ÞÞ ¼ 1Þ 	 PrðAðUV Þ ¼ 1ÞP �jV j. Here
A executes no more than t time. We construct an
algorithm Bðx; yÞ such that

Bðx; yÞ ¼ AðxÞ; y ¼ y0;
0; otherwise:

�
ðA:1Þ

Then we construct C such that it can pick an x at its
choice and let PrðCðGðxÞÞ¼ 1Þ	PrðCðUV Þ¼ 1ÞP
�. C works as follows. With every execution, C first
picks X0 uniformly randomly from V . Then given
any input y, CðyÞ :¼BðX0;yÞ. It remains to show
that C is an �-distinguisher. First, we can see that
PrðCðyÞ ¼ 1Þ ¼ PrðBðX0; y0Þ ¼ 1Þ � Prðy ¼ y0Þ. So
PrðCðGðX0ÞÞ¼1Þ¼PrðBðX0;GðX0ÞÞ¼1Þ¼

P
a2V Pr

ðBða;GðaÞÞ ¼ 1Þ � PrðX0 ¼ aÞ ¼
P

b2V PrðBðG	1ðbÞ;
bÞ ¼ 1Þ � 1=jV j ¼ ð1=jV jÞ PrðBðG	1ðy0Þ; y0Þ ¼ 1Þ ¼
PrðAðG	1ðy0ÞÞ ¼ 1Þ � 1=jV j. Also PrðCðUV Þ ¼ 1Þ
¼ PrðBðUV ;GðX0ÞÞ ¼ 1Þ ¼ ð1=jV jÞPrðBðUV ;y0Þ ¼ 1Þ
¼ð1=jV jÞPrðAðUV Þ¼1Þ. Therefore jPrðCðGðX0ÞÞ¼
1Þ 	 PrðCðUV ÞÞj ¼ ð1=jV jÞj PrðAðG	1ðy0ÞÞ ¼ 1Þ 	
PrðAðUV Þ ¼ 1Þj P ð1=jV jÞ � ðjV j�Þ ¼ �. h

Remark. If the only assumption about G is that it is
a pseudorandom function, then this bound of jV j�
for G	1 is ‘‘almost’’ tight. To see this, let G be the
following (randomized) function. We choose a

fixed element y0 2 V and any subset S of V such

that jSj ¼ bjV j=2c. We also pick a random value x0
uniformly distributed on S. Then we letGðx0Þ :¼ y0,
and G restricted on the domain V 	 X ðxÞ be a one-
to-one random function from V 	 fxg to V 	 fyg.
Then it can be shown that G is a ð0;1; 1=jSjÞ-
pseudorandom function as G	1ðy0Þ can be any ele-
ment in S. However, we will show that G	1 is a

ð0;1; 1
2
Þ-pseudorandom function as follows. An

adversary first picks y0. Then the uniform distribu-
tion on S and the uniform distribution on V can be
distinguished by the following algorithm A. Given
an input x, A outputs 1 if x 2 S and 0 otherwise. Let
UV be the uniform distribution on V . Then PrðA
ðG	1ðy0ÞÞ ¼ 1Þ ¼ 1 and PrðAðUV ÞÞ ¼ jSj=jV j6 1

2
.

So jPrðAðG	1ðy0ÞÞ ¼ 1Þ 	 PrðAðUV ÞÞP 1
2
. So when

G is a ð0;1; 1SÞ-pseudorandom function, G	1 is not

even a ð0;1; 1
2
	 dÞ for any positive d.
Appendix B. Greedy algorithm and its optimality

proof

In this section, we formally define the greedy

algorithm and state the optimality of the greedy

algorithm in reducing the U value. Since the

greedy algorithm for C value can be similarly
formulated and proved, in the interest of space, we

omit that part. In the following, we first introduce

the notations and definitions we are going to use in

the proof of our main theorem that the greedy

algorithm is optimal.

Notation 1. Whenever there is no ambiguity, we

denote an address tree (defined in Section 2) or a
subtree by its root node. We denote the set of leaf

nodes on the tree x as LF ðxÞ. Given a tree node x,
we define x:left and x:right as its left and right
child. Also, we denote the cardinality of a set S by
jSj. Throughout the rest of this paper, n always
denotes the number of bits in an IP address.

Definition 4. Given a tree x, and a set of leaves S.
We refer to S \ LF ðx:leftÞ as the left set of S, de-
noted as LSðSÞ, and S \ LF ðx:rightÞ as the right set
of S, denoted as RSðSÞ.

Definition 5. Given a tree x of height h, we define
RðS; xÞ as the number of address bits, among the
last h bits of all leaf nodes (IP addresses), which
are revealed when the set S (S � LF ðxÞ) of IP ad-
dresses are compromised. Note here that, in

computing RðS; xÞ, the first n	 h bits are ignored
(n is the number of bits in an IP address).

J. Fan et al. / Computer Networks 46 (2004) 253–272 269
RðS;NULLÞ is 0 by definition. We define

P ðS; y; xÞ ¼ RðS [fyg; xÞ 	 RðS; xÞ, which is the the
number of bits that will be newly compromised

when y is added to the compromised address set S.

Definition 6. Given a tree x, a set S of leaves is
called the optimal set defined on x, if given any
other leaf set S0 of the same cardinality,

RðS0; xÞ6RðS; xÞ.

Given a tree x, the greedy algorithm to choose m
IP addresses to compromise is shown in Fig. 8.

Note that it is a randomized algorithm, since when
there are more than one y0s that maximizes

P ðS; y; xÞ (line 5), they will be randomly picked
with equal probability. In the program, the vari-

able S is the set of IP addresses compromised and
R has the value of RðS; xÞ.

Definition 7. Given a tree x, a leaf set S is called a
greedy set defined on x, when the greedy algorithm
(shown in Fig. 8) with input x will generate a se-
quence of jSj leaves that are exactly elements of S
with non-zero probability.

In the following, we state and prove the fol-

lowing theorem, which implies that the greedy

algorithm indeed generates an optimal set. Lem-

mas used in the proof will be stated and proved
after the theorem.

Theorem 3. Any greedy set is also an optimal set.

Proof. Given a tree x, we only need to prove the
following: given any N > 0, and any optimal set O
and greedy set S of the same cardinality N ,
Fig. 8. Our greedy algorithm.
RðS; xÞPRðO; xÞ. This is trivially true when N ¼ 1.
So in the following, we only consider N > 1. We
induct on the height h of the tree x. The conclusion
trivially holds for h ¼ 1 (a single node tree). Sup-
pose the conclusion also holds for h ¼ k.
We now prove the theorem for h ¼ k þ 1 and

N > 1. Since the elements of set S is a possible
sequence generated by the greedy algorithm, they

can be ordered according to the greedy order they

appear in the sequence. We denote Sl ¼ l1;
l2; . . . ; li as elements of LSðSÞ in the greedy order,
and Sr ¼ r1; r2; . . . ; rN	i as elements of RSðSÞ in the
greedy order. Similarly, we denote LSðOÞ as
Ol ¼ l01; l

0
2; . . . ; l

0
j and RSðOÞ as Or ¼ r01; r

0
2; . . . ; r

0
N	j

(no order is assumed in this case). According to

Lemma 4, the sequences Sl and Sr are greedy se-

quences in the trees x:left and x:right, respectively.
When i ¼ j, according to induction hypothesis,

RðOl; x:leftÞ6RðSl; x:leftÞ and RðOr; x:rightÞ6
RðSr; x:rightÞ, since the height x:left and x:right are
both k. Since N > 0, RðO; xÞ ¼ RðOl; x:leftÞþ
RðOr;x:rightÞþjLF ðxÞj6RðSl;x:leftÞþRðSr;x:rightÞþ
jLF ðxÞj ¼ RðS; xÞ according to Lemma 5.
Now we only need to consider the case where

i 6¼ j. WLOG, we assume that i > j. Then Sr can

be extended to a longer greedy sequence Z ¼
r1; r2; . . . ; rN	j, where rN	iþ1; rN	iþ2; . . . ; rN	j are

drawn from x:right. Also, Y ¼ l1; l2; . . . ; lj, being a
subsequence of Sl (a greedy sequence in the tree
x:left by Lemma 4), is also a greedy sequence in
the tree x:left. Then according to the induction
hypothesis, RðZ; x:rightÞPRðOr; x:rightÞ since

jZj ¼ jOrj ¼ N 	 j and RðY ; x:leftÞPRðOl; x:leftÞ
since jY j ¼ jOlj ¼ j. Define X ¼ Y [Z. Then

RðX ; xÞPRðO; xÞ according to Lemma 5. Now to
prove RðS; xÞPRðO; xÞ, our final step is to prove
RðS; xÞPRðX ; xÞ. We define Ym ¼ l1; l2; . . . ; lm,
Zm ¼ r1; r2; . . . ; rN	m, and Xm ¼ Ym [Zm, where

j6m6 i. Note that S ¼ Xi and X ¼ Xj. What we

need to show is RðXi; xÞPRðXj; xÞ.
We claim that RðXmþ1; xÞPRðXm; xÞ, where

j6m6 i	 1. We first prove the case where m ¼ j.
This is equivalent to prove that P ðXj 	 frN	jg;
ljþ1; xÞP P ðXj 	 frN	jg; rN	j; xÞ. Let G be the set of
elements that has already been in the greedy
sequence right before the element ljþ1 is added,
when the greedy algorithm is executed to generate

S. By the semantics of the greedy algorithm,

270 J. Fan et al. / Computer Networks 46 (2004) 253–272
G � Yj [Zi. So G � Yj [Zi � Xj 	 frN	jg. Also
LSðGÞ ¼ LSðXj 	 frN	jgÞ ¼ Yj. Then, since N > 1,
according to Lemma 6(a), PðG; ljþ1; xÞ ¼ P ðXj 	
frN	jg; ljþ1; xÞ, and according to Lemma 6(b),

P ðG; rN	j; xÞP P ðXj 	 frN	jg; rN	j; xÞ. Also PðG;
ljþ1; xÞP P ðG; rN	j; xÞ, since the greedy algorithm
chooses ljþ1 over rN	j. Consequently, P ðXj 	
frN	jg; ljþ1;xÞPPðXj 	frN	jg; rN	j;xÞ. This proves
RðXmþ1; xÞPRðXm; xÞ where m ¼ j. Using similar
arguments, we can prove RðXmþ1; xÞPRðXm; xÞ for
m ¼ jþ 1; jþ 2; . . . ; i	 1. Then we get our desired
result RðXi; xÞPRðXj; xÞ. h

Lemma 4. If S is a greedy set defined on the tree x,
then LSðSÞ is a greedy set defined on the tree x:left,
and RSðSÞ is a greedy set defined on the tree x:right.

Proof. Suppose that LSðSÞ consists of k nodes
y1; y2; . . . ; yk in the sequence it is generated by the
greedy algorithm on S. Let Gi be the set of nodes

that have been generated by the greedy algorithm

right before the node yi is generated. Obviously
Gi	1 � Gi. For any i and any z 2 LSðLF ðxÞÞ 	 Gi,

we know that (a) P ðGi; z; xÞ6 PðGi; yi; xÞ since

otherwise the algorithm running on tree x would
not have chosen yi over z. It remains to show (b)
P ðLSðGiÞ; z; x:leftÞ6 P ðLSðGiÞ; yi; x:leftÞ. That is,
the algorithm running on tree x:left (with para-
meter k) would have a non-zero probability to
generate the sequence y1; y2; . . . ; yk. We need to
discuss two cases. The first case is when Gi ¼ ;.
In this case, obviously i ¼ 1 and y1 is the first
node inserted. Then according to the Lemma

7(a), P ðG1; z; x:leftÞ ¼ P ðG1; z; xÞ 	 jLF ðxÞj and
P ðG1; y1; x:leftÞ ¼ P ðG1; y1; xÞ 	 jLF ðxÞj. Then (b)

follows from (a). The second case is when Gi is

non-empty (either i 6¼ 1 or G1 is not empty). In this
case, according to Lemma 7(b) P ðLSðGiÞ; z;x:leftÞ¼
P ðGi; z; xÞ and P ðLSðGiÞ; yi; x:leftÞ ¼ PðGi; yi; xÞ, (b)
also follows from (a). h

Lemma 5. Given a tree x, when jSj > 0, RðS; xÞ ¼
RðLSðSÞ; x:leftÞþ RðRSðSÞ; x:rightÞ þ jLF ðxÞj.

Proof. Since jSj > 0, the height h of the tree x is at
least 1. When the first node in S is introduced, the
ðn	 hþ 1Þth bit of every address under tree x is
compromised and there are jLF ðxÞj of them. So
RðS; xÞ ¼ RðS; x:leftÞ þ R:ðS; x:rightÞ þ jLF ðxÞj.
However, the last h	 1 bits of all leaf nodes under
x:left and x:right are only affected by LSðSÞ and
LSðRÞ respectively. That is RðS; x:leftÞ ¼ RðLSðSÞ;
x:leftÞ and RðS; x:rightÞ ¼ RðRSðSÞ; x:rightÞ. The
result follows. h

Lemma 6. Given a tree x and two non-empty leaf
sets S and T , and a leaf y of x, the following are true:

• (a) If LSðSÞ ¼ LSðT Þ and y 2 LSðLF ðxÞÞ (in the
left subtree), then P ðS; y; xÞ ¼ P ðT ; y; xÞ. Simi-
larly if RSðSÞ ¼ RSðT Þ and y 2 RSðLF ðxÞÞ, then
P ðS; y; xÞ ¼ P ðT ; y; xÞ.

• (b) If S � T , then PðS; y; xÞP P ðT ; y; xÞ.
Proof. (a) We only prove the first part since the

second part follows from the symmetry. Suppose

y 2 LSðLF ðxÞÞ, then according to Lemma 7(b),

P ðS; y; x:leftÞ ¼ P ðLSðSÞ; y; x:leftÞP ðT ; y; x:leftÞ ¼
P ðLSðT Þ; y; x:leftÞ since S and T are both non-

empty. Then the result follows from the assump-

tion that LSðSÞ ¼ LSðT Þ. (b) Since S � T , when a
new node y is compromised, the set of new bits

that are compromised as a consequence in the case

when S has been compromised, is a superset of in
the case when T has been compromised. The result
follows. h

Lemma 7. Given a tree x, if y 2 LSðLF ðxÞÞ, then (a)
P ð;; y; xÞ ¼ P ð;; y; x:leftÞ þ jLF ðxÞj and (b) for any
non-empty set S, P ðS; y; xÞ ¼ P ðS; y; x:leftÞ ¼
P ðLSðSÞ; y; x:leftÞ. Similarly, if y 2 RSðLF ðxÞÞ, then
(c) P ð;; y; xÞ ¼ P ð;; y; x:rightÞ þ jLF ðxÞj and (d) for
any non-empty set S, PðS; y; xÞ ¼ PðS; y; x:rightÞ ¼
P ðRSðSÞ; y; x:leftÞ.

Proof. We only prove (a) and (b) since (c) and (d)

follows from the symmetry. Suppose the height of

the tree x is h. First recall that n is the number of
bits in an IP address. (a) When y is compromised,
the ðn	 hþ 1Þth bit of every address under tree x
is compromised, and there are jLF ðxÞj of them.
Also, for any z 2 RSðLF ðxÞÞ, its last h	 1 bits are
not compromised because the length of the com-

mon prefix between y and z is no longer than n	 h.
Also, the number of bits (among the last h	 1

J. Fan et al. / Computer Networks 46 (2004) 253–272 271
bits) in nodes of LSðLF ðxÞÞ that will be affected by
y’s being compromised is fully accounted in

P ð;; y; x:leftÞ. Therefore, P ð;; y; xÞ ¼ P ð;; y;
x:leftÞ þ jLF ðxÞj. (b) This case is similar to (a) ex-
cept that when S is non-empty, the ðn	 hþ 1Þth
bit of every address under tree x has already been
compromised before y is compromised. So the
term jLF ðxÞj does not exist in (b). For the second
equality, note that none of the leaf nodes in RSðSÞ
will affect the last h	 1 bits of the leaf nodes under
tree x:left. h

References

[1] T. McGregor, H.-W. Braun, J. Brown, The NLANR

network analysis infrastructure, IEEE Communications

Magazine 38 (5) (2000) 122–128.

[2] The Internet traffic archive. Available from <http://

ita.ee.lbl.gov/> April 2000.

[3] B. Krishnamurthy J. Wang, On network-aware clustering

of web clients, in: Proceedings of the ACM Sigcomm 2000,

September 2000, pp. 97–110.

[4] G. Minshall, TCPdpriv Command Manual, 1996.

[5] T. Ylonen, Thoughts on how to mount an attack on

TPCpdriv’s ‘‘-a50’’ option. . ., in: TCPpdpriv Source Dis-
tribution, 1996.

[6] J. Daemen, V. Rijmen, AES proposal: Rijndael, Technical

report, Computer Security Resource Center, National

Institute of Standards and Technology, Available from

<http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf>,

February 2001.

[7] B.C. Neuman, T. Ts’o, Kerberos: an authentication service

for computer networks, from IEEE Communications

Magazine, September, 1994, in: W. Stallings (Ed.),

Practical Cryptography for Data Internetworks, IEEE

Computer Society Press, Silver Spring, MD, 1996.

[8] R. Ganesan, Yaksha: augmenting Kerberos with public-

key cryptography, in: Proceedings of the Internet Society

Symposium on Network and Distributed System Security

(SNDSS’95), February 1995, pp. 132–143.

[9] M.K. Reiter, M.K. Franklin, J.B. Lacy, R.N. Wright, The

omega key management service, in: ACM Conference on

Computer and Communications Security, 1996, pp. 38–47.

[10] O. Goldreich, S. Goldwasser, S. Micali, How to construct

random functions, Journal of the ACM 33 (4) (1986) 792–

807.

[11] M. Luby, C. Rackoff, How to construct pseudorandom

permutations from pseudorandom functions, SIAM Jour-

nal on Computing 17 (2) (1988) 373–386.

[12] M. Bellare, J. Kilian, P. Rogaway, The security of cipher

block chaining, in: Y.G. Desmedt (Ed.), Advances in

Cryptology––Crypto 94, Lecture Notes in Computer Sci-

ence, vol. 839, Springer, Berlin, 1994, pp. 341–358.
[13] M.�A. Ruiz-S�anchez, E.W. Biersack, W. Dabbous, Survey

and taxonomy of IP address lookup algorithms, IEEE

Network 15 (2) (2001) 8–23.

[14] M. Bellare, Practice-oriented provable-security, in: First

International Workshop on Information Security (ISW97),

Boston, MA, Lecture Notes in Computer Science, vol.

1396, Springer, Berlin, 1998.

[15] S. Goldwasser, M. Bellare, Lecture Notes on Cryptogra-

phy. Available from <http://www-cse.ucsd.edu/users/mihir/

papers/gb.html>.

[16] D. Stinson, Cryptography, Theory and Practice, CRC

Press, Boca Raton, FL, 1995.

[17] K. Cho, K. Mitsuya, A. Kato, Traffic data repository at

the wide project, in: Proceedings of USENIX 2000 Annual

Technical Conference: FREENIX Track, San Diego, CA,

June 2000.

[18] NLANR, File ‘sdc-964451101.tstamp+plen+destip’ in-

cluded with NLANR network traffic packet header traces,

2000.

[19] B. Lampson, A note on the confinement problem, Com-

munications of the ACM 16 (10) (1973).

[20] Snort, the open source network intrusion detection system,

2001.

[21] A. Yao, Theory and applications of trapdoor functions

(extended abstract), in: Proceedings of the IEEE FOCS’82,

November 1982, pp. 80–91.
Jinliang Fan is a Ph.D. student in the
College of Computing at Georgia
Institute of Technology. He received
his B.S. and M.S. from Peking Uni-
versity, Beijing, China, in 1994 and
1998, respectively, all in Computer
Science. His research interests include
network security, privacy and ano-
nymity in network measurement and
monitoring, and control and perfor-
mance analysis of overlay networks.
Jun Xu is an Assistant Professor in the
College of Computing at Georgia
Institute of Technology. He received
his B.S. in Computer Science from
Illinois Institute of Technology in 1995
and a Ph.D. in Computer and Infor-
mation Science from The Ohio State
University in 2000. His current re-
search interests include data streaming
algorithms for networking, discrete
algorithms for networking, network
security, theoretical computer science
applied to computer networks, and
performance modeling and simulation.

He received the NSF CAREER award in 2003 for his ongoing
efforts in establishing fundamental lower bound and tradeoff

results in networking.

http://ita.ee.lbl.gov/
http://ita.ee.lbl.gov/
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
http://www-cse.ucsd.edu/users/mihir/papers/gb.html
http://www-cse.ucsd.edu/users/mihir/papers/gb.html

272 J. Fan et al. / Computer Networks 46 (2004) 253–272
Mostafa H. Ammar is currently a Re-
gents’ Professor with the College of
Computing at the Georgia Institute of
Technology, Atlanta, GA, USA. He
received the S.B. and S.M. degrees
from the Massachusetts Institute of
Technology in 1978 and 1980, respec-
tively and the Ph.D. in Electrical
Engineering from the University of
Waterloo, Ontario, Canada in 1985.
For the years 1980–1982 he worked at
Bell-Northern Research (BNR), first
as a Member of Technical Staff and
then as Manager of Data Network

Planning. He is the co-author of the textbook ‘‘Fundamentals
of Telecommunication Networks,’’ published by John Wiley

and Sons. He is also the co-guest editor of April 1997 issue of
the IEEE Journal on Selected Areas in Communications on
‘‘Network Support for Multipoint Communication.’’ He also
was the Technical Program Co-Chair for the 1997 IEEE
International Conference on Network Protocols and the 2002
Networked Group Communication Workshop. He served as
the Editor-in-Chief of the IEEE/ACM Transactions on Net-
working (1999–2003) and served on the editorial board of
Computer Networks (1992–1999). He is a Fellow of the IEEE
and a Fellow of the ACM.

Sue B. Moon received her B.S. and
M.S. from Seoul National University,
Seoul, Korea, in 1988 and 1990,
respectively, all in Computer Engi-
neering. She received her Ph.D. degree
in Computer Science from the Uni-
versity of Massachusetts at Amherst in
2000. From 1999 to 2003, she worked
in the IPMON project at Sprint ATL
in Burlingame, California. In August
of 2003, she joined KAIST as an
assistant professor and now teaches in
Daejeon, Korea. Her research interests
are in network performance measure-
ment and monitoring.

	Prefix-preserving IP address anonymization: measurement-based security evaluation and a new cryptography-based scheme
	Introduction
	Prefix-preserving anonymization schemes
	TCPdpriv and its properties
	A cryptography-based scheme

	Attacking prefix-preserving anonymization
	Security analysis of cryptographic attack
	Evaluation of the effects of semantic attacks
	Metrics to measure effect of attacks
	An evaluation of the effect of attacks on real traces
	Effect of compromising random addresses
	Effect of compromising greedily-generated addresses

	Results on two specific attacks
	Frequency analysis
	DNS server address tracing

	Miscellaneous attacks

	Summary of our work
	Proofs of Lemmas 1 and 2
	Greedy algorithm and its optimality proof
	References

