KNOM Tutorial 2003

Internet Traffic Matrix Measurement and Analysis

Sue Bok Moon

Dept. of Computer Science

Overview

- Definition of Traffic Matrix
 - Traffic demand, delay, loss
- Applications of Traffic Matrix
 - Engineering, research, SLAs
- Challenges in Obtaining Traffic Matrix
 - Limitation of NetFlow and active probes
 - Challenges in measurement and modeling
- Summay & Future Work

Definition of Traffic Matrix

- What is a traffic matrix?
 - A matrix built on metric of interest
 - Traffic demand matrix
 - How much traffic flows from point A to point B
 - Granularity: PoP, router, link, prefix
 - Delay matrix
 - How much delay from point A to point B
 - Granularity: PoP, router, link, end hosts
 - Loss matrix
 - How many packets are dropped from point A to point B
 - Granularity: PoP, router, end hosts

Example: AT&T Latency Matrix

Latency in milliseconds

Traffic Demand Matrix

- Not part of SLAs
 - Hard to obtain
 - Few available publicly

Delay Matrix

- Usually a matrix of average delay of pings between routers of random selection per PoP
 - Average of all PoP-to-PoP delays => SLA
- At end hosts
 - Easy to get using pings between hosts of interest

Loss Matrix

- Usually a matrix of average loss rate of pings between routers of random selection per PoP
 - Average of all PoP-to-PoP loss rates => SLA
- At end hosts
 - Easy to get using pings between hosts of interest

- Marketing/Sales
 - How much traffic does customer A send from point #1 to point #2?
 - Where should customer A buy more capacity from us?
 - Is most traffic originating in Korea stay within Korea?
 - What is the trend in international traffic growth?
 - What is the performance that customer A sees?
 - Do we have an edge over our competitors?

Network Operators

- Capacity Planning
 - How much traffic do we have from point A to point B?
 - How much capacity should we add?
 - When should we add more capacity?
- Network Engineering
 - Where is the hot spot? From SNMP
 - What if a link fails from point A to point B?
 - What if we move traffic from point A to point B?

- Customers: SLAs
 - What quality of service am I getting?
 - How much delay do I get from ISP A?
 - How much loss do I experience from ISP A?
 - Can I get delay under X ms from ISP A?
 - What is the most popular destination of my traffic?

Researchers

- Traffic modeling
 - How does TM evolve over time?
 - What is the fanout factor of traffic?
 - How much more capacity do we expect between point A and point B?
- Example: IP over WDM
 - Given physical topology of routers and optical nodes, what is the "best" virtual topology?
 - Based on traffic demand matrix

Challenges in Obtaining Traffic Matrix

- Traffic Demand Matrix
 - resource requirements in routers
 - # of concurrently active flows
 - resource requirements in measurement infrastructure
 - production rate of flow statistics
 - traffic characterization
 - packet/byte rate of original traffic
 - rate o f occurrence of original flows
 - average packet/bytes per original flow

Resource Requirements

Network

Network Operation Center

Most Popular Tools of Choice?

- NetFlow for traffic demand matrix
- ping for delay and loss matrix

NetFlow

- Cisco's "proprietary" tool
 - Not an IETF standard
- Basic idea
 - Based on (src ip, src port, dst ip, dst port, proto)
 - Records byte/packet/duration per flow
 - Cannot keep up with high speed links
 - Can sample every Nth packet

NetFlow Sampling

Original Packets

Sampled Packets (every 1/N, N=3)

time

Limitation of NetFlow

- Scalability
 - Historically NetFlow had a "performance issue"
 - Never deployed at the core
 - Number of flows in case of DDoS attacks beyond capacity
 - Network melt down

Number of Active Flows on a OC-48 Link

Limitation of NetFlow

- Representativeness
 - Can we estimate # of total flows from # of sampled flows accurately?
 - Can we estimate # of total WWW flows from # of sampled WWW flows accurately?
 - Metrics of interest:
 - # of flows, flow rate,
 - Packet sampling
 - reduce effective packet rate
 - save cost: slower memory sufficient (DRAM vs SRAM)

NetFlow Sampling

Original Packets

Sampled Packets (every 1/N, N=3)

Flow Splitting

time

Comparison of sparse and non-sparse applications

- Flow definition
 - 5-tuple = (src ip, src port, dst ip, dst port, proto)
 - ▶ interflow timeout = T
- Increase timeout T
 - potentially less splitting
 - fewer measured flows, more active flows
- Sparse vs. non-sparse flows
 - napster vs. www
 - # of mean active flows change differently over T
 - No simple model of rate and # active flows based on aggregate traffic rates
 - Model sparse and non-sparse flows separately [Duffield03]

Challenges in Delay Monitoring

- Not much is known about delay within ISP
 - People think they know delay, but ...
 - Cisco SAA implementation on GSR did not consider clock synchronization, and outputs meaningless numbers
- Too many paths to cover
 - hop-by-hop addition not yet possible

Limitation of Active Probes

- Representativeness [Choi04]
 - Average? Median?

Suitable Statistic: Percentile!

Mode detection is hard

- Difficult to distinguish small from big
 - Don't know how many ahead of them
- High-percentile
 - represents upper bound for "most" delay
 - requires a very small number of probes to estimate

Sampling for Demand Matrix

- Periodic sampling does not answer:
 - What are the top 10 flows?
 - What is the most dominant application and who is the heaviest user?
 - What is the total # of packet for every flow?

Hash Function

- Mapping from a very large space to a smaller space
 - h: X Y where |X| >> |Y|
 - ▶ IP address to 10-bit hashed key
 - 5-tuple address to 30-bit hashed key
- Load factor = collision probability

What are the top 10 flows?

Sampling for Elephants [Estan02]

Sampling for Elephants [Estan02]

What is the most dominant application and who is the heaviest user?

Who is using my link? [Estan03]

Looking at the traffic

Looking at traffic aggregates

Ideal traffic report

Traffic aggregate	Traffic
Web traffic	42.1%
Web traffic to library.bigU.edu	26.7%
Web traffic from www.schwarzenegger.com	13.4%
ICMP traffic from sloppynet.badU.edu to jeff.dorm.bigU.edu	11.9%

Traffic Clusters and Reports

- Traffic clusters are multidimentional aggregates.
- Traffic reports give volume of chosen clusters
- Only those over threshold are reported
- To avoid redundant data, compress inferrable data (up to error H)
- Highlight non-obvious aggregates with unexpectedness label

Structure of regular traffic mix

■ Backups from CAIDA to tape seryerNAP

Steady ICMP probing from CAIDA

What is the total # of packet of every flow?

Space-Code Bloom Filter

- Bloom filter answers set-membership.
- Space-code bloom filter answers multisetmembership
- Use a number of "virtual Bloom-filters, spread multiplicity information over space.
- Write-only
- At OC768, it can work at 5ns SRAM
- What about storage space at the router?

Future Work

- One traffic matrix to rule?
 - Can we answer all questions with one matrix?
- Continuous monitoring
 - data export in real-time
 - query over streaming data
- Availability/survivability
 - Impliations in SLAs?

Failures are part of everyday operations

Time between Failures (network-wide)

Sources of failures

- Duration can provide hints, e.g.,
 - long (>1hour): fiber cuts, severe failures
 - medium (>10min): router/line card failures
 - short (>1min): line card resets
 - very short (<1min): software problems, optical equipment glitches
- Other hints
 - shared equipment (routers, optical)
 - router logs (e.g., SONET alarms), etc.

Network-wide Failure Duration

References

- [Duffield03] N. Duffield, C. Lund, M. Thorup, "Properties and Prediction of Flow Properties from Sampled Packet Streams," ACM SIGCOMM IMC, Miami, Oct., 2003
- [Choi04] B.Y. Choi, S. Moon, Z.L. Zhang, C. Diot, "Analysis of Point-to-Point Packet Delay in an Operational Network," IEEE INFOCOM, Hong Kong, Mar., 2004
- [Estan03] C. Estan, S. Savage, G. Varghese, "Automatically Inferring Patterns of Resource Consumption in Network Traffic," SIGCOMM 2003
- [Estan02] C. Estan, G. Varghese, "New Directions in Traffic Measurement and Accounting," SIGCOMM 2002

Acknowledgements

- C. Estan's SIGCOMM 2002 talk.
- S. Bhattacharyya and G. Iannaconne's ICNP 2003 Tutorial.