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ABSTRACT
Point-to-point delay is an important network performance
measure as well as a key parameter in SLAs. We study how
to measure and report delay in a concise and meaningful way
for an ISP, and how to monitor it efficiently. We analyze
various measurement intervals and potential metric defini-
tions. We find that reporting high quantiles (between 0.95
and 0.99) every 10-30 minutes as the most effective way to
summarize the delay in an ISP. We then propose an active
probing scheme to estimate a high quantile with bounded
error. We show that only a small number of probes are
sufficient to provide an accurate estimate. We validate the
proposed delay monitoring technique on real data collected
on the Sprint IP backbone network.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Experimental Design,
Statistical Computing

General Terms
Measurement, Performance

Keywords
Delay, Performance monitoring, Active probing

1. INTRODUCTION
Point-to-point delay is a powerful “network health” indi-

cator. It captures service degradation due to congestion, link
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failure, and routing anomalies. Thus it has been used as a
key parameter in Service Level Agreements (SLAs) between
an ISP and its customers. Obtaining meaningful and accu-
rate delay information is necessary for both ISPs and their
customers. Operational experience suggests that the delay
metric should report the delay experienced by most packets
in the network, capture anomalous changes, and not be sen-
sitive to statistical outliers such as packets with options and
transient routing loops [11, 3].

The common practice in operational networks is to use
ping-like tools. ping measures network round trip times
(RTTs) by sending ICMP requests to a target machine over
a short period of time. However, ping was not designed
as a delay measurement tool, but a reachability tool. Its
reported delay includes uncertainties due to path asymmetry
and ICMP packet generation times at routers. Furthermore,
it is not clear how to set the parameters of measurement
tools (e.g., the probe interval, frequency and duration of
measurement) in order to get a certain accuracy.

Inaccurate measurement defeats the purpose of perfor-
mance monitoring. Operators may make wrong decision
based on erroneous measurement data. In addition, inject-
ing a significant number of probes for measurement may
affect the performance of regular traffic, as well as tax the
measurement systems with unnecessary processing burdens.
More fundamentally, defining a metric that can give a mean-
ingful and accurate summary of point-to-point delay perfor-
mance has not been considered carefully.

We raise the following practical concerns in monitoring
delays in a backbone network. How often should delay
statistics be measured? What metric(s) capture the net-
work delay performance in a meaningful manner? How do
we implement these metrics with limited impact on network
performance? In essence, we want to design a practical de-
lay monitoring tool that is amenable to implementation and
deployment in high-speed routers in a large network, and
that reports useful information.

The major contributions of this paper are two-fold: (i) By
analyzing the delay measurement data from an operational
network (Sprint US backbone network), we identify high-
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Table 1: Summary of matched traces (delay in ms)

Set From To Start Time (UTC) Duration Packets min. Avg. med. .99th max.

1 OC-48 OC-12 Aug. 6. 2002 12:00 16h 24m 1,349,187 28.430 28.460 28.450 28.490 85.230
2 OC-12 OC-12 Nov. 21, 2002 14:00 5h 27m 882,768 27.945 29.610 28.065 36.200 128.530
3 OC-12 OC-48 Nov. 21, 2002 14:00 5h 21m 3,649,049 28.425 31.805 32.425 34.895 135.085
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Figure 1: Empirical cumulative probability density function of delay over 30 minute interval

quantiles [0.95-0.99] as the most meaningful delay metrics
that best reflect the delay experienced by most of packets in
an operational network, and suggest 10-30 minute time scale
as an appropriate interval for estimating the high-quantile
delay metrics. The high-quantile delay metrics estimated
over such a time interval provide a best representative pic-
ture of the network delay performance that captures the
major changes and trends, while they are less sensitive to
transient events, and outliers. (ii) We propose and develop
an active probing method for estimating high-quantile delay
metrics. The novel feature of our proposed method is that
it uses the minimum number of samples needed to bound
the error of quantile estimation within a prescribed accu-
racy, thereby reducing the measurement overheads of active
probing. To the best of our knowledge, this is the first ef-
fort to propose a complete methodology to measure delay
in operational networks and validate the performance of the
active monitoring scheme on operational data.

The remainder of this paper is organized as follows. In
Section 2 we provide the background and data used in our
study. In Section 3 we investigate the characteristics of
point-to-point delay distributions obtained from the packet
traces and discuss metrics used in monitoring delay in a
tier-1 network. In Section 4 we analyze how sampling errors
can be bounded within pre-specified accuracy parameters
in high quantile estimation. The proposed delay measure-
ment scheme is presented and its performance is evaluated
using packet traces in Section 5. In Section 6 we summarize
related works. We conclude the paper in Section 7.

2. DATA AND BACKGROUND
We describe our data set and provide some background

about point-to-point delay observed from this data.
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Figure 2: Presence of ECMP in Data Set 3

2.1 Data
We have collected packet traces from Sprint’s tier-1 back-

bone using the methodology described in [9]. The monitor-
ing system passively taps the fibers to capture the first 44
bytes of all IP packets. Each packet header is timestamped.
The packet traces are collected, from multiple measurement
points simultaneously, and span over a long period of time
(e.g. hours). All the monitoring systems are synchronized
by GPS (Global Positioning System). The resolution of the
clock is sub-microsecond, allowing us to disambiguate packet
arrival times on OC-48 links. The timestamp maximum er-
ror is 5 microseconds.

To obtain packet delays between two points, we first iden-
tify packets that traverse two points of measurements. We
call this operation packet matching. We use hashing to effi-
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ciently match two packet traces. We use 30 bytes out of the
first 44 bytes in the hash function. The other 14 bytes are
IP header fields that would not help disambiguate similar
packets (e.g. version, TTL, and ToS). We occasionally find
duplicate packets. Since these packets are totally identical,
they are a source of error in the matching process. Given
that we observe less than 0.05% of duplicate packets in all
traces, we remove these duplicate packets from our traces.

We have matched more than 100 packets traces, and kept
only those matched trace that exhibited many (more than
half a million) successful matched packets. The matched
traces are from paths with various capacities and loads over
multihop nodes. For a succinct presentation, we have chosen
to illustrate our observations of with 3 matched traces out
of the 21 we studied. The statistics of these three matched
trace are shown in Table 1. In all the matched trace data
sets, the source and destination links are located on the West
Coast and the East Coast of the United States respectively,
rendering trans-continental delays over multiple hops.

2.2 Background
We now briefly discuss the characteristics of actual packet

delays observed on the Sprint US IP backbone. More de-
tailed observations can be found in [20, 4].

The empirical cumulative probability distributions of point-
to-point delays using a bin size of 5 µs is shown Figure 1.
For ease of observation, we divide the duration of traces into
30 minute intervals and plot distributions for the first and
last 30 minute intervals of each trace.

Delay distributions exhibit different shapes, as well as
change over time, especially in Data Set #2 and #3. We ex-
plain these differences as follows. In theory, the packet delay
consists of three components: propagation delay, transmis-
sion delay and queueing delay. Propagation delay is deter-
mined by the physical characteristics of the path. Transmis-
sion delay is a function of the link capacities along the path
as well as the packet size. Queueing delay depends on the
traffic load along the path, and thus varies over time. In
practice, other factors add variations to the delay packets
experience in an operational network. First, Internet packet
sizes are known to exhibit three modes, where the peaks are
around 40, 576 (or 570), and 1500 bytes [12]. When there
is little queueing on the path, the packet size may impact
the shape of a distribution even in the multi-hop delays, as
shown in Figure 1(a). In addition, routing can introduce
delay variability. Route may change over time because of
link failure. Figure 1(b) shows that the path between the
two measurement points changed within the last 30 minutes.
Furthermore, packets can take multiple routes between two
points because of load balancing, as in Figure 1(c). Equal-
cost multi-path (ECMP) routing [28] is commonly employed
in operational networks. Routers (e.g., Cisco routers in our
study) randomly split traffic using a hash function that takes
the source and the destination IP addresses, and the router
ID (for traffic splitting decision to be independent from up-
stream routers) as input to determine the outgoing link for
each packet. Therefore packets with the same source and
destination IP addresses always follow the same path. We
define a (two-tuple) flow to be a set of packets with the same
source and destination IP addresses, and group packets into
flows. We then compute the minimum packet delay for each
flow. As suggested in [4], if the two flows differ significantly
in their minimum delays, they are likely to follow two differ-

ent paths. In Figure 2 we plot the minimum delay of each
flow by the arrival time of the first packet in the flow for Data
Set 3. The plot demonstrates the presence of three differ-
ent paths, each corresponding to one step in the cumulative
delay distribution of Figure 1(c). Last, extreme packet de-
lays may occur even under a perfectly engineered network,
due to routing loops [11] or router architecture [3] related
issues. From the perspective of a practical delay monitoring,
we need to take all these factors into account to provide an
accurate and meaningful picture of actual network delay.

3. METRICS DEFINITION FOR
PRACTICAL DELAY MONITORING

The objective of our study is to design a practical delay
monitoring tool to provide a network operator with a mean-
ingful and representative picture of delay performance of an
operational network. Such a meaningful and representative
picture should tell the network operator major and persis-
tent changes in delay performance (e.g., due to persistent
increase in traffic loads) not transient fluctuations due to
minor events (e.g., a transient network congestion). Hence
in designing a practical delay monitoring tool, we need to
first answer two inter-related questions: (i) what metrics
should we select so as to best capture and summarize the
delay performance of a network, namely, by a majority of
packets; and (ii) over what time interval should such metrics
be estimated and reported? We refer to this time interval
as the (metrics) estimation interval. Such questions have
been studied extensively in statistics and performance eval-
uation (see [15], for a general discussion of metrics in perfor-
mance evaluation). From the standpoint of delay monitoring
in an operational network, we face some unique difficulties
and challenges. Thus our contribution in this respect lies in
putting forth a practical guideline through detailed analysis
of delay measurements obtained from Sprint’s operational
backbone network: we suggest high quantiles ([0.95,0.99])
estimated over a 10-30 minute time interval as meaningful
metrics for ISP practical delay monitoring. In the following
we present our analysis and reasoning using the three data
sets discussed in the previous section as examples.

To analyze what metrics provide a meaningful and repre-
sentative measure of network delay performance, we consider
several standard metrics, i.e., minimum, average, maximum,
median (50% percentile, or 0.5th quantile) and high quan-
tiles (e.g., 0.95th quantile), estimated over various time in-
tervals (e.g., 30 seconds, 1 minute, 10 minutes, 30 minutes,
1 hour), using the delay measurement data sets collected
from the Sprint operational backbone networks. Results are
plotted in Figure 3. Note that here we do not plot the
maximum delay metrics as maximum delays are frequently
so large that they obscure the plots for the other metrics.
Some statistics of the maximum delays are given in Table 1,
where we see that maximum delays can be several multiples
of the 0.99th quantiles.

From the figures, we see that delay metrics estimated over
small time intervals (e.g., 1-minute) tend to fluctuate fre-
quently, and they do not reflect significant and persistent
changes in performance or trends (for example, Figure 3(a),
Figure 3(b) at time 14:40 and Figure 3(c) at time 16:30).
On the other hand, the increase in delay around 18:30 and
onwards in both Data Set #2 and Data Set #3, represents
a more significant change in the delay trend, and should be
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Figure 3: Delay metrics over different estimation intervals

brought to the attention of network operators. Note also
that in a few occasions the average delays particularly esti-
mated over a small time interval are even much larger than
the 0.99th quantiles (see, the top two plots in Figure 3(a)
around 18:00 and 21:00) – this is due to the extreme values
of the maximum delays that drastically impact the average.

As a general rule of thumb, the time interval used to es-
timate delay metrics should be large enough not to report
transient fluctuations, but not too large in order to capture
in a timely fashion the major changes and persistent trends
in delay performance. In this regard, our analysis of the
data sets suggests that 10-30 minute time interval appear to
be an appropriate delay estimation interval. As an aside, we
remark that our choice of 10-30 minute time interval is also
consistent with the studies of others using different mea-
surement data. For example, the active measurement study
in [30] using NIMI measurement infrastructure [23] has ob-
served that in general packet delay on the Internet appears
to be steady on time scales of 10-30 minutes.

In choosing delay metrics, similar properties are desired.
A meaningful metric to ISPs should characterize the delay
experienced by most of packets, thereby providing a good
measure of the typical network performance experienced by
network users. Furthermore, such a delay metric should not
be too sensitive to outliers. We summarize the pros and
cons of various delay metrics as below:

• Maximum delay suffers greatly from outliers. The rate
of outliers (IP packets with options, malformed pack-
ets, router anomalies) is such that there would be such
a packet in almost every time interval. However, pack-
ets that experience the maximum delay are not repre-
sentative of the network performance.

• Average or median delay have the main disadvantage
of not capturing delay variations due to route changes
(Figure 1(b)) or load-balancing (Figure 1(c)) that hap-
pen frequently in operational networks. Moreover, av-

erage is sensitive to outliers especially when a small
number of probes are used.

• Minimum delay is another commonly used metrics. We
can see from Figure 3 that the minimum delay is very
stable at any time granularity. A change in minimum
delay reports a change in the shortest path.

• High quantiles ([0.95, 0.99]) ignore the tail of the dis-
tribution and capture the delay experienced by most
of the packets. When estimated over the appropriate
time interval, it is not sensitive to a small number of
outliers. However, in the presence of multiple paths be-
tween the measurement points, high quantiles reflects
only the delay performance of the longest path.

Weighing in the pros and cons of these metrics, we conclude
that high percentile is the most meaningful delay metric.
However, high quantile does not detect a change in the short-
est path. Together with minimum delay, it gives an ISP the
range of delays experienced by most of the packets between
the two endpoints. As minimum delay is easy to capture [16]
using active probes, in this paper, we focus on the accurate
estimation of high quantiles.

4. QUANTILE ESTIMATION ANALYSIS
In this section we develop an efficient and novel method

for estimating high-quantile delay metrics: it estimates the
high-quantile delay metrics within a prescribed error bound
using a number of required probe packets. In other words,
it attempts to minimize the overheads of active probing.
In the following, we first formulate the quantile estimation
problem and derive the relationship between the number
of samples and the estimation accuracy. Then, we discuss
the parameters involved to compute the required number of
samples.

We derive the required number of probes to obtain a pre-
specified accuracy in the estimation using Poisson modu-

86



0.95 0.96 0.97 0.98 0.99
0.001

0.01

0.02

0.03

0.04 

0.05

p−th quantile (bin size = 5µs)

pr
ob

ab
ili

ty
 a

t p
−

th
 q

ua
nt

ile
 (

f(
q p))

f(q
p
): from observed distributions

Figure 4: Empirical tail probability

0.95
0.96

0.97
0.98

0.95
0.96

0.97
0.98

0

1000

2000

3000

4000

quantile(p)confidence level(1−η)

re
qu

ire
d 

nu
m

be
r 

of
 p

ro
be

s

(f(q
p
) = 0.001) (ε = 10 µ s) 

Figure 5: Number of probes required (ε = 10µs, f(qp) =
0.001)

Figure 6: Scheduling n∗ pseudo-random samples
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lated probing. Active probes perform like passive samples
under the following two assumptions. First, the amount of
probe packets should be negligible compared to the total
traffic, so that it does not perturb the performance it mea-
sures. Second, the performance of probe packets should well
represent the performance of regular traffic. Both assump-
tions are held, which rationalizes our use of active probing.
As we will see later, the required number of probes is rela-
tively small, thus it is negligible on today’s high speed back-
bone networks. Also, we encapsulate the probes in regular
UDP packets so that they do not receive special treatments
in a router, unlike packets with IP option or ICMP packets
that go to the slow-path of a router.

Now, we formally define a quantile of a delay distribution.
Let X be a random variable of delay. We would like to
estimate a delay value qp such that the 99%(i.e., p = 0.99)
of time, X takes on a value smaller than qp. The value qp is
called the pth quantile of delay and is the value of interest
to be estimated. It is formally stated as1:

qp = inf{q : F (q) ≥ p} (1)

where F (·) denotes a cumulative probability density func-
tion of delay X.

1Note that theoretically, the original delay distribution can
be considered as a continuous function, and the measured
delay distribution is a realization of it.

Suppose we take n random samples, X1, X2, . . . , Xn. We
define F̂ , an empirical cumulative distribution function of
delay, from n samples (i = 1, . . . , n) as

F̂ (qp) =
1

n

n�
i=1

IXi≤qp (2)

where the indicator function IX≤qp is defined as

IXi≤qp =

�
1 if Xi ≤ qp,
0 otherwise.

Then, the pth sample quantile is determined by

q̂p = F̂−1(p) (3)

Since F̂ (x) is discrete, q̂p is defined using order statistics.
Let X(i) be the ith order statistic of the samples, so that
X(1) ≤ X(2) ≤ · · · ≤ X(n). The natural estimator for qp is

the pth sample quantile (q̂p). Then, q̂p is computed by

q̂p = X(�np�) (4)

Our objective is to bound the error of the pth quantile
estimate, q̂p. More specifically, we want the absolute error
in the estimation |q̂p − qp| to be bounded by ε with high
probability of 1 − η:

Pr {|q̂p − qp| > ε} ≤ η (5)
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Now we discuss how many samples are required to guaran-
tee the pre-specified accuracy using random sampling. Since
they are obtained by random sampling, X1, X2, . . . , Xn are
i.i.d. (independent and identically distributed) samples of
the random variable X. It is known that quantile estimates
from random samples asymptotically follow a normal distri-
bution as the sample size increases (See Appendix for de-
tails).

q̂p
D−→ N

�
qp,

σ2

n

�
where σ =

√
p(1−p)

f(qp)
(6)

f(qp) is the probability density at the pth quantile of the ac-
tual distribution. Eq. (6) is called Bahadur expression [26].
The estimator is known to have the following properties: (i)
unbiasedness: the expectation of the estimate is equal to the
true value (i.e., E(q̂p) = qp). (ii) consistency: As the num-
ber of probes n increases, the estimate converges to the true
value (i.e., q̂p → qp as n → ∞).

We derive from Eq. (5) and (6) the required number
of samples to bound the estimation error within the pre-
specified accuracy as

n∗ =

�
zp · p(1 − p)

f2(qp)

�
(7)

where zp is a constant defined by the error bound parame-

ters (i.e., zp =
�

Φ−1(1−η/2)
ε

�2

), and Φ(·) is the cumulative

probability function of standard normal distribution.
Eq. (7) concisely captures the relationship of the number

of samples on the quantile of interest (p), the accuracy pa-
rameters (ε, η) and a parameter of original delay distribution
(f(qp)).

From Eq. (6) and (7), we show that the variance of the
estimate is bounded as

V ar(q̂p) =
p(1 − p)

f2(qp) · n∗ ≤ 1

zp
(8)

since n∗ ≥ zp ·
�

p(1−p)

f2(qp)

�
.

Unfortunately, f(qp) is not known in practice. Therefore,
it can only be approximated. The required number of sam-
ples is inversely proportional to f2(qp).

A reasonable lower-bound of the value should be used in
the computation of n∗, so that the accuracy of the quan-
tile can be guaranteed. We investigate an empirical values
of f(qp) using our data. The empirical p.d.f. of a delay
distribution should be evaluated in terms of a time granu-
larity of measurements. As the bin size or the time gran-
ularity of distribution gets larger, the relative frequency
of delay becomes larger. In order to approximate f2(qp),
we observe the tail probabilities of delay distributions from
the traces. However, for 10-30 minute durations of vari-
ous matched traces from differing monitoring locations and
link speeds , we find that the probabilities at high quan-
tiles, f(qp), (0.95 ≤ p ≤ 0.99) vary little and can be rea-
sonably lower bounded. Figure 4 shows the probability of
high quantiles of the matched traces at time granularity of
5µs. We find the values between 0.0005 to 0.001 are suf-
ficient as the lower-bound of the tail probability for quan-
tiles of 0.95 ≤ p ≤ 0.99. Meanwhile, if p approaches to 1
(e.g.,p = 0.99999), the quantile is close to the maximum and
f(qp) becomes too small requiring large number of samples.
Note that when the tail probability becomes heavier, f(qp)

becomes larger making the estimate more accurate. On the
other hand, when the tail probability becomes smaller than
the approximated, the accuracy of an estimate (the variance
of estimation) would not degrade much, since the variance
of the original packet delay would be small. Therefore, with
given accuracy parameters and the lower bound of f(qp),
the number of probes is decided as a constant.

Figure 5 shows the number of required samples for dif-
ferent quantiles and different accuracy parameters. It illus-
trates the degree of accuracy achieved with the number of
samples, and thus provides a guideline on how to choose the
probing frequency for a given quantile p to be estimated.
A sample size between a few hundred and a few thousand
probes (420 ∼ 3200) is enough for (ε = 10µs, 1 − η ∈
[0.95, 0.99]) range of accuracy and (q.95 ∼ q.99) high quan-
tile. With high speed links (1 Gbps and above), we consider
the amount of injected traffic for probing purpose negligible
compared to the total traffic. For example, 1800 packets
over a 10 minute period corresponds to about 3 packet per
second on average. Suppose 64 byte packets are used for
the probes. This would constitute only 1.5 Kbps which is
0.0002% of the total traffic for a 30% loaded OC-48 link.

5. DELAY MONITORING METHODOLOGY
In this section, we describe our probing scheme and val-

idate its accuracy using delay measurement data collected
from the Sprint operational backbone network.

5.1 Active Probing Methodology
The design goal of our active probing scheme is to es-

timate high quantile effectively and efficiently over a fixed
estimation interval. In Section 4, we have shown that at
least n∗ number of independent random samples are needed
in the estimation interval in order to accurately estimate
high quantiles.

We proceed as follows. To generate n∗ number of probes
within an estimation interval I , we divide the interval into
n∗ subintervals of length T (= I/n∗). With the help of two
timers – a periodic (T ) timer and a random (t ∈ [0, T ]) one, a
random probe is generated for each subinterval T in a time-
triggered manner (i.e., whenever a random timer t expires,
a probe is generated). At the end of an estimation interval
(I), the delay quantile of the probe packets is computed and
reported. Figure 6 illustrates graphically how to generate
the pseudo-random probes. With this scheme, we ensure
that n∗ number of probes are generated independently in
every estimation interval without generating a burst at any
moment.

We now verify if our time-triggered pseudo-random prob-
ing performs close to random sampling in estimating high
delay quantile. If the inter-arrival times of packets with long
delays (e.g., 0.95th quantile or larger) are temporarily cor-
related, the pseudo-random probing would not enable us to
estimate high percentile delay well. However, we find that
the correlation coefficient is close to 0 (for other intervals and
traces with the estimation interval of 10-30 minutes). If the
arrival times of packets with long delays (e.g., .95th quan-
tile or larger) are temporally correlated, the pseudo-random
probing may not capture the delay behavior well. Figure 7
shows the scatter plot of inter-arrival times of packets with
long delays (for the last 30 minutes of Data Set #3). It il-
lustrates that inter-arrival times of packets with long delays
are essentially independent.
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Figure 8: Impact of packet size on quantile (30 minute estimation interval)

Probe packets scheduling aside, there are several practi-
cal issues in implementing a probing scheme such as pro-
tocol type and packet size. For the type of probe packets,
we choose to use UDP packets instead of ICMP packets
that are used in ping-like active probing softwares. ICMP
packets are known to be handled with a lower priority at a
router processor. Thus their delay may not be representa-
tive of actual packet delay. Probe packet size might affect
the measure of the delay. We analyzed all matched traces
and found that packet size has little impact on high quan-
tile. This is best illustrated in Figure 8 where we classify
packets into three clusters based on the packet sizes, and
computed their .99th quantile, compared with that of all
packets. As observed, high quantiles from individual packet
size classes are similar, and one particular packet size class
does not reflect high quantile from all packets better con-
sistently. It provides the evidence that high quantile delays
are not likely to come from packets of a large size, thus the
size of probe packet should not impact the accuracy of high
quantile estimation.

We also have performed a thorough analysis of packet
properties in order to detect a correlation between packet
fields and delay, if any. However, we did not find any cor-
relation between packet types and the delay distribution.
This result confirms that the tail of distribution comes from
queueing delay rather than due to a special packet treatment
at routers.

As ECMP is commonly employed in ISPs, we need to
make sure that our probe packets take all available paths
when they exist. Load balancing is done on a flow basis, in
order to preserve packet sequence in a flow. Therefore, we
propose to vary the source address of probe packets within
a reasonable range (e.g., a router has a set of legitimate
IP addresses for its interfaces) to increase the chances of
our probe packets to take all available paths. The original
source address can be recorded in the probe payload to allow
the destination to identify the source of the probes.

We have described the proposed active probing methodol-
ogy in terms of probing schedule, the number of probes for a
certain accuracy, the probe packet type and the packet size.
With regard to a control protocol to initiate and to maintain
monitoring sessions between endpoints, the existing proto-

cols such as Cisco SAA (Service Assurance Agent) [25]2 or
IPPM one-way active measurement protocol (OWAMP) [19]
can be used with little modification.

5.2 Validation
To validate the proposed technique, we emulate active

probes in the following manner3. Given an estimation in-
terval (I) and accuracy parameters ({ε, η}), whenever the
random timer (t) expires, we choose the next arriving packet
from the data sets, and use its delay as an active probe mea-
surement. The accuracy parameters are set to be ε = 10µs 4

and η = 0.05 to estimate .99th quantile of delay. We have
used 0.001 and 0.0005 for f(qp). The computed numbers of
samples to ensure the estimation accuracy are only 423 and
1526, respectively.

The estimated .99th quantiles over 10 minute intervals us-
ing 423 packets are compared with the actual .99th quantiles
in Figure 9. Using the same number of 423 probes, the esti-
mated quantiles are compared with the actual ones over 30
minute interval in Figure 10. Using such small numbers of
packets, the estimated quantiles are very close to the actual
ones, for all the data sets and estimation intervals.

To assess the statistical accuracy, we conduct experiments
over an estimation interval (30 minutes) as many as 500
times. For 0.99th quantile (q.99), we desire the error to be
less than ε with probability of 1 − η. We compare the esti-
mated quantile from each experiment with the actual quan-
tile from the total passive measurements. Figure 11(a) dis-
plays the estimation error in each experiment. Most errors
are less then 10µs which is the error bound ε. To validate
the statistical guarantee of accuracy, in Figure 11(b), we
plot the cumulative empirical probability of errors in quan-
tile estimation. The y axis is the experimental cumulative
probability that the estimate error is less than x. It illus-
trates that indeed 95% of the experiments give estimation

2SAA (Service Assurance Agent) is an active probing facility
implemented in Cisco routers to enable network performance
measurement.
3We could not perform probing simultaneously to passive
collection since all long-haul links on the Sprint backbone
have been upgraded to OC-192 after the trace collection.
4This small error bound is chosen to show the feasibility of
the proposed sampling.
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Figure 9: Actual and estimated .99th quantiles (10 minute estimation interval)
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Figure 10: Actual and estimated .99th quantiles (30 minute estimation interval)

Table 2: Bounded variance of estimates ({ε, η} =
{10µs, 0.05}, p = 0.99)

1/zp Data Set 1 2 3
25.95 V ar(q̂p) 11.97 25.72 25.55

error of less than 10µs, which conforms to the pre-specified
accuracy parameters.

Another key metric for the performance of a sampling
technique is the variance of an estimator. Small variance in
estimation is a desired feature for any sampling method, as
it tells the estimate is more reliable. In the previous sec-
tion, we have shown that the proposed scheme enables us to
bound the variance of the estimates in terms of the accuracy

parameters, i.e. 1/zp =
�

ε
Φ−1(1−η/2)

�2

. Table 2 shows the

variance of the estimates from the proposed scheme. The
variances are indeed bounded by the value given in Eq. (8)
given in Section 4.

6. RELATED WORK
IPPM (IP Performance Metrics) [13] has defined a set

of metrics [10] for measuring the quality, performance, and
reliability of Internet paths, and developed standard frame-
works [29] for active probing. IPPM does not provide a com-
plete delay measurement methodology as we do. Projects
such as RIPE (Reseaux IP Europeen) TTM (Test Traffic
Measurement) [24] and Surveyor [17] implement IPPM met-
rics, and provide GPS enabled measurement infrastructures
to be deployed on networks to monitor. In these frameworks,
probe frequency is left to a user’s decision.
ping (and its variations), traceroute, pathchar [14], clink [5])

are active probing tools that have not been originally de-
signed to give accurate measures of network delay. Most
of these performance measurement tools use path-oriented
active probing techniques. The number of probes and the
measurement durations are typically left to user’s choice.
Then, average, minimum, and maximum delays are com-
puted for the given number of probes.

Many performance monitoring projects such as AMP (Ac-
tive Measurement Project) [7], CAIDA’s skitter [8], and
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Figure 11: Quantile estimation with bounded error ({ε, η} = {10µs, 0.05}, p = 0.99)

PingER [18] employ such tools. These projects use either
bursty for a short time or Poisson modulated probing. Prob-
ing frequency varies from two packets per second to one
packet per hour between two measurement points. SAA [25]
is an active probing tool in Cisco routers that can measure
delay statistics of a path between two routers. Since the
probing scheme in SAA is periodic, the statistical validity is
neither known nor controllable. Note that none of the tools
or projects above has proposed an explicit delay metric and
validated a probe generation technique on real data.

A number of papers have addressed delay performance
measurement. Some of them are worth mentioning, but
they are not directly related to our work. End-to-end In-
ternet delay characteristics have been studied in [2] and [22]
using active probes and/or TCP connection traces. A high
precision timing technique without GPS was developed for
one way delay measurement in [21]. The problem of moni-
toring link delays and faults that ensure complete coverage
of the network are studied in [1]. In [27], authors compute
delays for path segments from a set of end-to-end delay mea-
surements by solving a system of linear equations.

Hash-based passive sampling in [6] proposes to use the
same hashing function at all links in a network to sample
the same set of packets at different links in order to infer
statistics on the spatial relations of the network traffic. In
[31], the author considers the problem of SLA validation
with passive measurement. Given an average SLA delay
value, they classify packets into two types, i.e., SLA compli-
ant or not. It is assumed that passively measured data from
two endpoints can be transferred at low load period or over
a separate network.

Our work differs from all the above, in that we focus
on the representativeness of point-to-point measurements,
which give a concise and accurate summary of network per-
formance for operational utilization. In particular, we in-
vestigate practical issues such as the impact of the measure-
ment interval, the appropriate metric, boundable accuracy
in delay estimation and measurement overheads. Further-
more, to the best of our knowledge, our work is the first
attempt to compare and validate the performance of probes
with that of actual traffic in an operational network.

7. CONCLUSIONS
We proposed a practical delay measurement methodology

designed to be implemented in operational networks. It con-
sists of measuring high quantiles (between 0.95 and 0.99) of
delay over 10-30 minute time interval using pseudo random
active probing. We justify each step and parameters of the
technique and validate it on real delay measurement col-
lected on a tier-1 backbone network. The accuracy of the
delay measured can be controlled, and is guaranteed with
a given error bound. Our method is scalable in that the
number of active probe is small, and the deployment and
monitoring overhead is minimal.

To the best of our knowledge, this is the first effort to
(1) propose a complete methodology to measure delay in
operational networks, and (2) validate the performance of
the proposed monitoring scheme on operational data.

The next step is to extend our validation by injecting ac-
tive probes using our technique while measuring the real
delay from passive monitoring of the link under measure.
As a part of this effort, we are enhancing the methodology
to monitor other performance parameters of interest to ISPs
(i.e., jitter, loss, and availability).
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APPENDIX
Proof of Eq. (6). To build a confidence interval for q̂p

around qp, we first derive the relationship between q̂p and
qp, in the context of random sampling. For ease of illus-
tration, we assume that X is a continuous random variable
with probability density function fX(x). As a further simpli-

fication of analysis, consider F̂ (x) to be continuous as well.
Then, note that

F̂ (q̂p) − F̂ (qp) = p − F̂ (qp) (9)

Consider a random variable Zi’s defined as Zi = p− IXi≤qp ,
(1 ≤ i ≤ n) Zis are i.i.d. random variables with zero mean
and a variance of p(1 − p). Therefore,

p − F̂ (qp) =
1

n

n�
i=1

�
p − IXi≤qp

	
=

1

n

n�
i=1

(p − Zi)

∼ N

�
0,

p(1 − p)

n

�
(10)

On the other hand, using a heuristic difference,

F̂ (q̂p) − F̂ (qp) ≈ F̂ ′(qp)(q̂p − qp) ≈ F ′(qp)(q̂p − qp)

= fx(qp)(q̂p − qp) (11)

Combining (9), (10) and (11), we obtain

q̂p ∼ N

�
qp,

σ2

n

�
where σ =

√
p(1−p)

fx(qp)
(12)
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