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Abstract—Community detection has been one of the major
topics in complex network research. Recently, several greedy
algorithms for networks of millions of nodes have been proposed,
but one of their limitations is inconsistency of outcomes [1].
Kwak et al. propose an iterative reinforcing approach to eliminate
inconsistency in detected communities.

In this paper we delve into structural characteristics of
communities identified by Kwak’s method with 12 real networks.
We find that about 40% of nodes are grouped into communities in
an inconsistent way in Orkut and Cyworld. Interestingly, they are
only two out of 12 networks whose community size distribution
follow power-law. As a first step towards interpretation of
communities, we use Guimera and Amaral’s method [2] to
classify nodes into seven classes based on the z-score and the
participation coefficient. Using the z-P analysis, we identify the
roles of nodes in Karate and Autonomous System (AS) networks
and match them against known roles for evaluation. We apply
topological mesoscale information to compare two AS produced
by Oliveira et al. [3], and Dhamdhere and Dovrolis [4] We report
that even though their AS graphs differ in size, their topological
characteristics are very similar.

I. INTRODUCTION

Community detection has been one of the major topics
in complex network research. Beyond the basic topological
characteristics, the communities unveil the mesoscale structure
of the network and provide insight into the topology. Quite a
few community detection algorithms have been proposed in
various areas from biology to computer science, but most of
them have limited scalability due to their time complexity. Re-
cently, several greedy algorithms have been proposed and have
demonstrated to work for networks of millions of nodes [5],
[6], [7]. Known limitations of modularity maximization ap-
proaches are resolution limit [8], its NP-hardness [9] and
inconsistency [1]. Although Brandes et al. state that ”most
suitable clustering algorithms probably identify one of [many
intuitive clusterings structurally close]”, inconsistent outcomes
through multiple runs of one algorithm trouble researchers
investigating individual communities.

Kwak et al. propose two quantitative metrics to assess
the level of inconsistency among detected communities from
independent multiple runs of modularity maximization meth-
ods [1]. They also propose an iterative reinforcing approach
to eliminate inconsistency in detected communities. Their
solutions successfully produce consistent communities in most

networks, but show inconsistency in two huge networks with
over 100 million links, namely, Orkut and Cyworld.

In this paper we delve into structural characteristics of
communities identified by Kwak’s method. Prior to interpre-
tation of communities, we examine the percentage of nodes
that undulate between communities and the community size
distributions. We find that about 40% of nodes are grouped into
communities in an inconsistent way in Orkut and Cyworld.
Interestingly their community size distributions follow power-
law, while others do not. It is yet to be shown whether the
power-law distribution of community sizes is an artifact of
modularity maximization algorithms or an inherent structure
of a network.

As a first step towards interpretation of communities, we use
Guimera and Amaral’s method [2] to classify nodes into seven
classes based on the z-score and the participation coefficient.
The z-score and the participation coefficient represent how
well a node connects other nodes in its own community and
how all links of a node spread over neighbor communities,
respectively. The seven classes broadly break nodes and hubs:
ultra-peripheral, peripheral, non-hub connector, and non-hub
kinless nodes; and provincial, connector, and kinless hubs.
Using the z-P analysis, we identify the roles of nodes in
Karate, C. Elegans, and Autonomous System (AS) networks
and match them against known roles for evaluation. The
AS graph represents the Internet connectivity at the service
provider level and has been extensively studied [4], [3].
However, lack of complete knowledge has been a sour point in
any measurement drive research of the AS Graph. In this work
we use two AS graphs produced by Oliveira et al. [3] and
Dhamdhere and Dovrolis [4] and compare their topological
characteristics. We report that their AS graphs differ in size
but their topological characteristics are very similar.

The remainder of this paper is organized as follows: In
Section II, we review literature on community detection and
then examine the size distribution of communities. In Section
II, we discuss the identified communities as the topological
mesoscale features. In Section III, we interpret the meaning
of communities obtained from the AS graph. In Section IV,
we conclude with discussion for future work.



II. COMMUNITIES: THEIR SIZES AND ROLES NODES PLAY

A. Review of community detection approaches

Community detection in complex networks has been an
active topic of research in multiple disciplines. Communities
represent a summary of structural features and functional
grouping. Researchers have found community structures to be
informative in human cellular signaling network [10], blogo-
sphere [11], urban environment [12], and air transportation
network [13].

Girvan and Newman have proposed a method to find com-
munity structure by betweenness centrality [14]. Their key idea
is that intra-community edges have high edge betweenness.
Their approach produce communities by removing edges of
high edge betweenness. Radicchi et al. reduce the computing
cost by considering only local quantities of edge-clustering
coefficient rather than global quantities of edge between-
ness [15]. The above algorithms are only two examples of
many others from different disciplines. Clauset et al. put out
a new metric modulairty, Q, defined as:

Q =
∑
i

(eii − a2i ) (1)

where eii is the ratio of the number of intra-community links in
the community i, and ai is the ratio of links attached to nodes
in community i [5]. It has been widely accepted and used
in community detection. Greedy agglomerative algorithms are
the fastest and most scalable solutions known so far [5],
[6], [7]. However, they all produce inconsistent partitioning
in multiple runs over the same network. In [1] Kwak et
al. define two measures to assess consistency of partitioning
over randomly ordered edge lists of a network: pairwise
membership probability and consistency. Pairwise membership
probability over N randomly ordered edge lists is defined like
following:

pij =

∑N
n=1 δ

n(ci, cj)

N
(2)

where

δn(ci, cj) =

{
1, if ci = cj in the nth dataset
0, otherwise

and i and j are adjacent nodes and ci and cj represent
communities that i and j belong to, respectively. The pij is
0 if node i and j always fall in different communities over
N runs, and the pij is 1 if node i and j always fall in the
same community over N runs. The consistency, C, shows
a network-wide level of consistency; it provides a summary
of the pairwise membership probability of all edges. The
consistency is defined as:

C =

∑
(vi,vj)∈E

(pij − 0.5)2

|E|
× 1

(0.5)2
(3)

The consistency C weighs the pairwise membership proba-
bilities away from 0.5. The second term in (3) normalizes C
from 0 to 1. The consistency is 1 if the pairwise membership

probability of every edge in a network is either 0 or 1, and
the consistency is 0 if the pairwise membership probability of
all edges is 0.

In [1], they report that the inconsistent partitioning can
be produced even in a very small network, such as the
Karate network, which consists of 34 nodes. They present an
iterative solution to find a consistent (or robust as referred
in [2]) communities in a network. They demonstrate that
identified communities after 5 iterations (or cycles) from 10
real networks, are consistent and that their solutions produce
very similar results among independent runs. However, for
very large and dense networks with more than 100 million
edges, namely, Orkut and CyWorld, their solution produce
non-converging partitioning.

B. Analysis of community size distribution

In order to delve deeper into the converging communities
of Kwak’s method, we first look at what percentage of edges
have pairwise membership probabilities that are not 0 or 1
after the 5th cycle. Here we use the 12 networks as in [1].
The 12 networks vary greatly in numbers of nodes and edges.
In addition, they come from various fields: an off-line social
networks (Karate), a biological network (C.Elegans), a pro-
tein interaction network (Protein Interaction), online bulletin
board network (BBS), the Internet AS network (AS graph),
online social networks (Facebook, Flickr, Orkut, YouTube,
Cyworld), a sampled world-wide web network (WWW), and
the Wikipedia link graph (Wikipedia). Table I summarizes the
topological characteristics of the 12 networks.

In Figure 1 we plot the Cumulative Distribution Function
(CDF) of pairwise membership probabilities after the 5th
cycle, and observe that Figures 1(a) to (f) all have the pairwise
membership probabilities of either 0 or 1, except for a very
limited number of edges. That is, the edges either always
belong to the same community or never after the 5th cycle. In
Figures 1(g), (h) and (k) the number of edges with 0 < pij < 1
is more than 100 but still they account for less than 1% of
edges in the entire network. In the case of Flickr in Figure 1(i)
1, 048, 102 or 4.611% of edges have 0 < pij < 1, but the
number is still not significant.

Community detection in Orkut and Cyworld by Kwak’s
method does not yield as high consistency as in other net-
works. Figures 1(j) and (l) show that in the two networks the
percentage of edges that are still left undecided is large, both
more than 40%; 41.23% for Orkut and 46.97% for Cyworld to
be exact. First to look at is the number of runs per cycle. Both
networks are too large and we cannot increase the number by
an order of magnitude. Instead we add a few more cycles
of 100 runs for these two networks and plot the CDF of the
pairwise membership probabilities in Figure 2. The percentage
of edges with 0 < pij < 1 fluctuates from 40 even up to 60%
in the case of Cyworld. The goal of this work is to identify
the root of this divergent behavior.

The number of edges is known to have correlation to the
level of consistency [1]. Then how about the characteristics of
communities? How similar or different are the communities



Network # of nodes # of links # of nodes in GCC # of links in GCC Avg. Degree Link Density Avg. C.C

Karate 34 78 34 (100%) 78 (100%) 4.6 0.14 0.57
C.Elegans 297 2,148 297 (100%) 2,148 (100%) 14.5 0.049 0.29

Protein 1,846 2,203 1,458 (78.9%) 1,948 (88.4%) 2.7 0.0018 0.071
BBS 7,410 103,462 7,339 (100%) 103,413 (100%) 28.2 0.0038 0.41

AS Graph 32,930 124,133 32,925 (100%) 124,131 (100%) 7.5 0.00023 0.38
Facebook 63,730 817,090 63,691 (99.5%) 816,886 (99.9%) 25.7 0.0004 0.22

WWW 325,729 1,090,108 325,729 (100%) 1,090,108 (100%) 6.7 0.000021 0.23
Wikipedia 1,870,709 36,532,531 1,870,521 (99.9%) 36,532,421 (99.9%) 39.1 0.000021 0.23

Flickr 2,302,924 22,838,276 2,173,369 (94.3%) 22,729,227 (99.5%) 20.9 0.00001 0.18
Orkut 3,072,440 117,185,083 3,072,440 (100%) 117,185,083 (100%) 76.3 0.000025 0.17

YouTube 3,223,588 9,376,594 3,216,082 (99.8%) 9,371,096 (99.9%) 5.8 0.000002 0.09
Cyworld 11,537,961 177,566,730 11,506,431 (99.7%) 177,548,838 (99.9%) 30.9 0.000003 0.16

TABLE I
BASIC STATISTICS OF 12 NETWORKS. GCC IS THE GIANT CONNECTED COMPONENT, AND AVERAGE C.C IS THE AVERAGE CLUSTERING

COEFFICIENT [1].

(a) Karate club (b) C.Elegans (c) Protein Interaction

(d) BBS (e) AS graph (f) Facebook

(g) World Wide Web (h) Wikipedia (i) Flickr

(j) Orkut (k) YouTube (l) Cyworld
Fig. 1. Pairwise membership probability after the 5th cycle



(a) orkut 7th (b) orkut 8th (c) orkut 9th

(a) cyworld 7th (b) cyworld 8th (c) cyworld 9th
Fig. 2. CDF of pairwise membership probabilities of Orkut and Cyworld after 7th, 8th, and 9th cycles

from different runs? In order to answer these questions we
examine the community size distribution of the 12 networks
in Figure 3. For those networks with less than the convergence
of 1 after the 5th cycle, we take the community partitioning
solution with the highest modularity. We find a large number
of small communities and a few large communities in Figure 3.
For networks with more than 1 million nodes and 10 million
edges, more than 70% of communities are smaller than 10
nodes. But very large communities that are only an order or
two smaller in the number of nodes from the original network
also emerge.

In order to investigate the tail behavior we plot the CCDF
of community size distribution in Figure 4. The figures are
labeld from (i) to (l) for ease of mapping to those in Fig-
ure 3. Only Orkut and Cyworld follow power-law in their
community size distributions. Other studies have reported the
power-law distribution of communities in various networks:
the co-purchasing item network in Amazon [5], a Japanese
online social network, mixi [16], and a scientific collaboration
network [17]. Also other community identification methods
lead to power-law distribution in community size [18], [19],
[20].

We consider two possible explanations where the power-law
in community size distribution comes from: the true nature of
a network or the artifact of the algorithms. There have been
much effort to analyze the characteristics of modularity [21],
[22], and it is known that the size of communities grows
with the size of the network in modularity maximization
method [8]. Nevertheless, power-law distribution of commu-
nity size has not been reported as an expected outcome of
modularity maximization methods yet.

For all networks with more than 10, 000 nodes and 100, 000
edges we have investigated, top 10% communities hold more
than 80% of nodes, except for BBS and Flickr. The BBS
network is generated from user interactions in an online
bulletin board system at a university with the population of
about 7, 000 [23]. Each user has one’s own bulletin board and

write about personal things. Each bulletin board is considered
a personal place. Anyone who can login to the bulletin board
system can add comments to anyone else’s board. Eom et al.
construct the BBS network based on comments on individual
boards [23] and the BBS network naturally reflect the off-
line intimacy between members. Therefore, an extremely
large community seldom exists. The high average clustering
coefficient of 0.48 confirms the prevalent modular structure in
the BBS network [24].

C. Cartography

The pairwise membership probability and community size
distributions have helped us understand the topological char-
acteristics of complex networks. However, we have still not
found out the roles that certain nodes play in communi-
ties. Guimera and Amaral define the role of a node in a
network by two topological properties: z-score and partici-
pation coefficient [2]. The z-score zi assesses how a node
i connects to other nodes within the same community. A
high intra-community degree leads to a high z-score. The z-
score represents the authority of a node within the group. For
example, two nodes of the highest z-score in Karate network
are the two persons who became the boss in each group [25]
after the breakup. The participation coefficient Pi measures
how the links of a node i are well-distributed over neighbor
communities. It is normalized between 0 and 14. If all links
of node i are within the community, then Pi = 0. If the links
of node i are well distributed over neighbor communities, Pi

approaches 1.
Guimera and Amaral assume a normal distribution for the

z-score and uses zi of 2.5 as a cut-off point for hubs (top 1%
nodes of high intra-community degree). They classify the other
99% nodes as non-hub. The hubs and non-hubs are further
divided by the participation coefficient into three classes (R1,
R2, and R3) and four classes (R4, R5, R6, and R7), respec-
tively. Guimera and Amaral qualitatively label those seven
classes: (R1) ultra-peripheral nodes; (R2) peripheral nodes;
(R3) non-hub connector nodes; (R4) non-hub kinless nodes;



(a) Karate club (b) C.Elegans (c) Protein Interaction

(d) BBS (e) AS graph (f) Facebook

(g) World Wide Web (h) Wikipedia (i) Flickr

(j) Orkut (k) YouTube (l) Cyworld
Fig. 3. Community size distribution

(i) Flickr (j) Orkut (k) YouTube (l) Cyworld
Fig. 4. Power law fitting

(R5) provincial hubs; (R6) connector hubs; and (R7) kinless
hubs. We determine the pivot z-score between hubs and non-
hubs as the 99% point from the empirical distribution of z-
score, for no distribution of z-score obtained from 12 networks
follows normal distribution.

In Figure 5 we illustrate the z-P space and divide nodes
into seven classes by the z-score and participation coefficient.
We find a pattern between the average degree of a network
and the proportion of nodes falling in each class of the z-P
plane. The lower the average degree of a network is, the more



(a) Karate club (b) C.Elegans (c) Protein Interaction

(d) BBS (e) AS graph (f) Facebook

(g) World Wide Web (h) Wikipedia (i) Flickr

(j) Orkut (k) YouTube (l) Cyworld
Fig. 5. z-P plane

nodes fall in R1. In Protein, WWW, and YouTube networks,
we find 77.57%, 91.89%, and 71.98% of nodes fall in R1,
respectively. The nodes of R1 are low in both the z-score
and the participation coefficient; a node mostly connects to
other nodes within its own community in a sparse network.
In contrast, if an average degree of a network is higher, more
nodes fall in R4. The nodes in R4 have low z-score and high
participation coefficient. That is, links of a node is likely to
spread evenly over neighbor communities in a dense network.
These nodes that connect to many communities might lead
inconsistency in community identification, because they have

many choices in choosing their community membership. For
future work we will investigate possible correlation between
the unsettling edges in Figure 1 and nodes in R4 in Figure 5.

III. VALIDATING IDENTIFIED COMMUNITIES

The basic assumption we make when using community
detection algorithms is that the topological structure of a
network presents the roles that nodes plays. In a typical human
organization there is a hierarchy such that, the top manger
talks to secondary managers, but unlikely to floor workers.
Similar interpretations are possible in other types of networks.



Graph z99 R1 R2 R3 R4 R5 R6 R7 0/0
Karate club 2.14377 15 5 4 9 0 0 1 0

44.1% 14.7% 11.8% 26.5% 0.0% 0.0% 2.9% 0.0%
C.Elegans 2.32009 39 52 31 172 0 0 3 0

13.1% 17.5% 10.4% 57.9% 0.0% 0.0% 1.0% 0.0%
Protein Interaction 3.81447 1,131 92 78 142 1 1 13 0

77.6% 6.3% 5.3% 9.7% 0.1% 0.1% 0.9% 0.0%
BBS 3.92132 2,320 602 450 3,893 0 2 72 0

31.6% 8.2% 6.1% 53.0% 0.0% 0.0% 1.0% 0.0%
AS graph 3.12862 22,525 2,545 3,199 4,321 40 27 263 6

68.4% 7.7% 9.7% 13.1% 0.1% 0.1% 0.8% 0.0%
Facebook 3.78518 19,915 11,328 4,266 27,231 113 60 461 18

31.4% 17.9% 6.7% 43.0% 0.2% 0.1% 0.7% 0.0%
World Wide Web 3.07442 296,728 8,334 2,389 12,248 2,157 29 1,044 2,800

91.1% 2.6% 0.7% 3.8% 0.7% 0.0% 0.3% 0.9%
Wikipedia 1.86745 365,518 266,435 102,693 1,117,164 815 341 17,549 6

19.5% 14.2% 5.5% 59.7% 0.0% 0.0% 0.9% 0.0%
Flickr 3.60555 1,202,898 101,795 178,702 474,620 2,028 1,089 15,325 196,913

55.3% 4.7% 8.2% 21.8% 0.1% 0.1% 0.7% 9.1%
Orkut 3.38152 900,393 323,524 62,296 1,755,560 2,337 306 28,003 22

29.3% 10.5% 2.0% 57.1% 0.1% 0.0% 0.9% 0.0%
YouTube 2.10732 2,313,546 202,319 214,889 451,374 9,642 2,732 19,760 1,821

71.9% 6.3% 6.7% 14.0% 0.3% 0.1% 0.6% 0.1%
Cyworld 2.93061 2,225,262 1,240,314 495,064 5,682,655 9,589 2,351 84,943 180,858

22.4% 12.5% 5.0% 57.3% 0.1% 0.0% 0.9% 1.8%

TABLE II
NUMBER PERCENTAGE OF NODES IN EACH CLASS OF z-P PLANE

Meunier et al. have acquired functional Magnetic Resonance
Imaging (fMRI) data of 18 volunteers and applied the Louvain
method [7] in order to discover the hierarchical modular
structure of human brain networks [26]. Their findings of nodal
structures turn out to match well-defined neuroanatomical
systems, but the results are yet empirical and require further
validation. Sociologists and psychologists are one of the first
to have built the human social network. Stanley Milgram’s
famous six-degrees-of-separation experiment has brought us
the surprising insight that we live in a small world [27]. In his
work on the strength of weak ties Granovetter defines a link
based on committee involvement and discovers the power of
inter-cluster links [28]. Sociologists construct networks from
corporate financial data, membership to boards of directors,
all sorts and analyze the structure of the network. However,
sociologists’ field work involve data collection via survey and
their networks have been traditionally limited to the order of
thousands. The collaboration network generated by published
papers reflects the relationships among authors. Rodriguez and
Pepe detect communities in a coauthorship network created
from 560 manuscripts of sensor networks and wireless com-
munication [29]. They find that identified communities reflect
academic department and affiliation of individuals, but not
the country of origin and academic positions of individuals.
For the case of biological networks, Ravasz et al. succeed to
identify functional modules hidden in the metabolic network
of 43 different organisms [30]. They find that those modules
are connected in a hierarchical manner, such that many small,
highly connected modules are organized into larger, less
cohesive units. In [31] protein-protein interaction network has
also been analyzed and shown that identified modules, densely

connected within themselves but sparsely connected to the rest
of the network, are actual protein complexes and dynamic
functional units.

Kwak et al. demonstrate in their preliminary work the
impact of geographic relevance in detected communities in the
AS graph [1]. They report on three communities: the largest
community, a single-country-AS dominated community, and
a star-shaped community. In this section we conduct a more
comprehensive study to validate the meaning of communities
in the AS graph.

A. AS graph

In the explosive growth path of the Internet, the Internet
AS topology has evolved in a distributed manner. There is
neither a central policy body to determine the direction of
evolution nor an administrator to monitor and provision for
better performance of the Internet and to plan the development
strategy for the entire Internet. The distributed nature of
growth gives the Internet not only the scalability but also the
uncertainty; it is a challenge to obtain the complete topology of
the Internet AS graph. Worse yet, the observed topology in the
AS graph reflects only the existence of connectivity between
two ASes; not the actual number of links, the capacity of links,
or traffic volume. Moreover, the topology of the collected
AS graph largely depends on the observation method and the
resulting topological characteristics may differ.

Faloutsos et al. report simple power-laws hold in the In-
ternet AS topology [32]. Later Chen et al. show that the
degree distribution of AS topology does not follow strict
power-law but heavy-tailed [33]. Carmi et al. investigate the
structure of Internet AS graph by the k-shell decomposition
method [34]. They divide the Internet into three components:



(a) Degree Distribution (b) Clustering coefficient (c) Degree correlation

(d) Community Size (e) No. of ASes (f) No. of Countries
Fig. 6. AS graphs by Dhamdhere and Oliveira

a nucleus, a fractal component, and dendrite-like structures.
Their findings are similar with the Internet Jellyfish model
proposed by Siganos et al. [35]. Mahadevan et al. analyze the
properties of Internet topology by degree correlation in d-sized
subgraphs [36]. They show that the Internet AS topology can
be reconstructed with the degree correlation when d = 3.

Oliveira et al. proposes a model that explains the topology
dynamics as a consistent-rate birth and death process [3]. Its
model identifies topology changes in observed data, and its
inference is statistically significant. Dhamdhere and Dovro-
lis observe linear growth trend in terms of ASes over ten
years [4], while Magoni and Pansiot examine the exponential
growth during 1997-2000 [37].

We analyze the community structure of two AS graphs and
compare them. One is produced by Dhamdhere and Dovrolis
(which we refer simply as (D)) [4] and the other is by
Oliveira et al. [3] (later referred to as (O)). Dhamdhere’s AS
graph contains 26, 831 ASes in 191 countries and 72, 985
links between the ASes. Oliveira’s AS graph is larger than
Dhamdhere’s; it contains 32, 930 ASes in 191 countries and
124, 133 links between ASes.

First, we compare the basic topological characteristics of
the two AS graphs. Figure 6(a) shows the degree distribution
of two AS graphs. We present that their degree distributions
follow power-law; the exponents are 2.15 (D) and 1.93 (O).
We obtain similarly close values of clustering coefficients and
assortativity (Figures 6(b) and (c)). The analysis of these three
topological characteristics support that two AS graphs are
similar structurally.

Using Kwak’s consistent community identification
method [1], we identify 47 communities in (D) and 49
in (O). We plot the size distribution of communities in

Figure 6(d). Note that there is a difference of about 5, 500
in the number of nodes between two graphs and thus their
communication size distributions cannot be perfectly aligned.

The first question we raise about the communities in the
AS graph is whether all the nodes in a community are from
a single country or not. Are the communities geographically
bounded? Dhamdhere and Dovrolis publish the location of the
company managing each AS by using WHOIS queries [4].
We use the country code from their dataset and map ASes to
countries.

In Figure 6(c), we plot the number of ASes in a country.
The 191 countries have at least one AS. We find that the geo-
graphical location of ASes is highly skewed. By the number of
ASes, the top ranked country is the United States. It contains
11, 084 ASes in (D) and 11, 019 ASes in (O). Considering
that the 2nd ranked country of Russia has only 1, 528 ASes
in (D) and 1, 512 in ASes (O), the concentration of ASes ni
United States is significant. Top 10% of countries contain 88%
of ASes, and top 20% of countries contain 95% of ASes. On
the other hand, the proportion of countries containing only a
single AS is about 20% in both AS graphs, and, furthermore,
half of the countries have fewer than 10 ASes.

We depict the number of countries in each AS community
in Figure 6(d). The communities with fewer than 100 ASes
have ASes from fewer than 5 countries, while the number
of countries rapidly grows in the communities of higher than
100 ASes. We consider two reasons for low locality in large
communities. One is the high proportion of countries that have
only a few ASes; 20% of countries have only one AS. These
ASes always fall in a community with ASes from different
countries, and the geographical locality decreases. The other
is economically and politically motivated alignment between



countries, such as EU. The ASes in Europe densely connect to
each other, and African ASes also densely connect to European
ASes probably due to strong economic ties. In Europe AS
1299 (TeliaNet Global Network) and AS 3257 (TINET) are the
two major ASes. They connect ASes of 48 and 56 countries,
respectively. They both fall into R7 in Figure 5(e), which
rightly reflects the important role these ASes play in regional
Internet business sectors.

Meunier et al. report that intermediate communities pro-
duced in the greedy agglomerative process of the Louvain
method can be useful to understand the structure of a net-
work [26]. Following their lead, we investigate the sub-
communities of the largest community in the AS graph. We
observe that the sub-community sizes are just one-tenth of
the largest community. Also the number of countries in a
community decreases similarly. This indicates that Louvain
method begins with a geographically concentrated community
in early stage and gradually merges near communities step by
step.

Class Tier 1 Large ISP Small ISP Stub
R1 0 1 166 22,027
R2 0 6 292 2,197
R3 0 2 43 3,103
R4 0 72 693 3,628
R5 0 17 20 10
R6 0 5 15 2
R7 8 141 83 27

TABLE III
ASES (O) IN Z-P PLANE

Class Tier 1 Large ISP Small ISP Stub
R1 0 5 326 17,844
R2 0 12 228 930
R3 0 4 39 3,165
R4 0 69 587 1,973
R5 0 19 12 4
R6 0 3 4 2
R7 8 128 70 18

TABLE IV
ASES (D) IN Z-P PLANE

In Section II-C we give an overview of z-P analysis of
the twelve networks. Here we verify how a structural role of
each AS defined in the z-P space matches the conventional
classification. Oliveira et al. classify ASes into four classes
based on the number of customers; a tier 1, a large ISP, a small
ISP and a stub. We find some correlations between classes in
z-P space and the classification by Oliveira. First, tier-1 ASes
and large ISPs are mostly classified as R7. Nineteen out of
top 20 ASes listed in the AS ranking page of CAIDA [38] are
also in R7. A node in R7, by definition, connects well to other
nodes in its own community and also to other communities.
This matches the definitions of tier-1 by Oliveira and top ASes
by CAIDA. Second, an AS of a small ISP is distributed in
non-hub regions. This implies that most ASes of a small ISP

are clustered with ASes of tier-1 or large ISPes, since the z-
score is defined as the relative proportion of within-community
degree. Finally, most stubs are classified as R1. They have
few links to other ASes, and their z-scores and participation
coefficients are low.

IV. CONCLUSION

In this paper we have investigated mesoscale structural
characteristics of communities in networks. We have found
that community size distributions do not have a uniform
distribution; some (Orkut and Cyworld) follow power-law and
other do not. However, the question about the origin of the
power-law nature in community size remains. Using two AS
graphs for community validation, we demonstrate that roles
defined in the z-P analysis match closely those that ASes
play regionally and offer more detailed view. We believe
this work is just a first step towards much research into
structural properties of network topologies and will continue
our investigation in this direction.
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