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Motivation 

Design & Ideas 

 Software routers are gaining momentum 
 in favor of extensibility & flexibility in network 

packet processing. 

 PacketShader achieves 40Gbps. [SIGCOMM ’10] 

 Currently the fastest software router 
(data-plane speed 40Gbps on a single x86 machine) 

 Next step: control-plane integration 

Will PacketShader keep up? 
 Bursting routing table updates (50-150 times/sec) 

 Large routing & forwarding tables 
(more than 320,000 entries and a few hundreds MB) 

 Updating forwarding tables in GPU similar to FIB 
updates in high-end routers 

Our key insight on GPU-based software routers: 
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 Software Architecture  Idea #1: Double-buffering 
 Modern GPUs have enough memory (1.5GB for GTX480) 

to store multiple instances of the forwarding table. 

 

 

 

 

 

 Idea #2: Incremental FIB updates 
 They reduce bandwidth and update time. 

 The data structure for forwarding table is critical. 

 We are considering a few known methods. 
([Gupta98], [Basu05], [Zhao10], [Liu10]) 
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