
Advanced Networking Lab & Networked and Distributed Computing Systems Lab, KAIST 9th USENIX OSDI, October 4, 2010

This work was supported by NAP of Korea Research Council of Fundamental Science & Technology (KRCF).

Joongi Kim1 , Keon Jang1 , Sangjin Han1, KyoungSoo Park2, and Sue Moon1
1Department of Computer Science, KAIST, {joongi, keonjang, sangjin}@an.kaist.ac.kr, sbmoon@kaist.edu

2Department of Electrical Engineering, KAIST, kyoungsoo@ee.kaist.ac.kr

Motivation

Design & Ideas

 Software routers are gaining momentum
 in favor of extensibility & flexibility in network

packet processing.

 PacketShader achieves 40Gbps. [SIGCOMM ’10]

 Currently the fastest software router
(data-plane speed 40Gbps on a single x86 machine)

 Next step: control-plane integration

Will PacketShader keep up?
 Bursting routing table updates (50-150 times/sec)

 Large routing & forwarding tables
(more than 320,000 entries and a few hundreds MB)

 Updating forwarding tables in GPU similar to FIB
updates in high-end routers

Our key insight on GPU-based software routers:

0

10

20

30

40

50

60

70

80

1% 5% 10% 50% 100%

Em
u

la
ti

o
n

 t
h

ro
u

gh
p

u
t

(G
b

p
s)

no update

1sec

500ms

100ms

10ms

Update
Interval

Modified table size

Packet I/O driver

Linux TCP/IP stack

Packet API

ipv4route, IPSec, OpenFlow, …

Fast-path

Slow-path

Kernel routing table

Existing software
routing frameworks
(e.g. XORP, Quagga)

Forwarding
table

manager

Forwarding
engine

(using GPUs)

 Software Architecture Idea #1: Double-buffering
 Modern GPUs have enough memory (1.5GB for GTX480)

to store multiple instances of the forwarding table.

 Idea #2: Incremental FIB updates
 They reduce bandwidth and update time.

 The data structure for forwarding table is critical.

 We are considering a few known methods.
([Gupta98], [Basu05], [Zhao10], [Liu10])

Inside GPU

User
space

Kernel
space

forwarding tables

route
updates

Updating cost of the forwarding table in PacketShader

