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Abstract—In this paper, we propose a methodology to predict
the popularity of online contents. More precisely, rather than
trying to infer the popularity of a content itself, we infer the
likelihood that a content will be popular. Our approach is rooted
in survival analysis where predicting the precise lifetime of an
individual is very hard and almost impossible but predicting the
likelihood of one’s survival longer than a threshold or another
individual is possible. We position ourselves in the standpoint of
an external observer who has to infer the popularity of a content
only using publicly observable metrics, such as the lifetime of
a thread, the number of comments, and the number of views.
Our goal is to infer these observable metrics, using a set of
explanatory factors, such as the number of comments and the
number of links in the first hours after the content publication,
which are observable by the external observer.

We use a Cox proportional hazard regression model that di-
vides the distribution function of the observable popularity metric
into two components: a) one that can be explained by the given
set of explanatory factors (called risk factors) and b) a baseline
distribution function that integrates all the factors not taken
into account. To validate our proposed approach, we use data
sets from two different online discussion forums: dpreview.com,
one of the largest online discussion groups providing news
and discussion forums about all kinds of digital cameras, and
myspace.com, one of the representative online social networking
services. On these two data sets we model two different popularity
metrics, the lifetime of threads and the number of comments, and
show that our approach can predict the lifetime of threads from
Dpreview (Myspace) by observing a thread during the first 5∼6
days (24 hours, respectively) and the number of comments of
Dpreview threads by observing a thread during first 2∼3 days.

I. INTRODUCTION

The emergence of Web 2.0 and online social networking
services, such as Digg, YouTube, Facebook, and Twitter, has
changed how users generate and consume online contents.
As the YouTube report of 20 hours worth of video upload
every minute demonstrates1, the amount of user-generated
contents is growing fast. Via online social networking services
augmented with multimedia contents support, sharing and
commenting on other users’ contents constitute a significant
part of today’s Internet users’ web experience. Then how
do users find contents that are interesting? How do certain
contents rise in popularity? If we can predict such rise, we can
pick those mostly likely to get popular and filter out others.
Such a mechanism will be extremely expedient to users in this
age of information deluge.

The popularity of an online content is not a well-defined,
but highly subjective term, which can be defined as a mixture

1http://www.youtube.com/t/fact sheet (accessed on Mar 26, 2010)

of endogenous and exogenous factors. The choice of factors
varies from a person to another and from a content to another.
Also, we note that accessibility and observability of the data
that represent those factors may not be universal. Thus in
order to model the popularity of online contents, we first have
to decide how we define “popularity”. What factors do we
take into consideration and which explicit data and related
measures shall we use to represent popularity?

Here we take the standpoint of an individual user who has
to infer the popularity of a content from publicly observable
data, such as the lifetime of threads and the number of
comments. Individual users have differing views of popularity
and measures of choice will be different. Our goal is to develop
a general framework that could accommodate differing views
by allowing users to choose contributing factors.

Multiple factors, however, complicate the accurate predic-
tion of online contents popularity. The popularity of contents
is sometime unpredictable by nature. For example, the flurry
of contents and reactions happening very early, even before
confirmation, of the death of Michael Jackson was probably far
more than what could have been predicted by any model. Some
contents become increasingly popular over time demonstrating
a cascading effect [1], and it is hard to predict what type
of contents will eventually instigate such a cascading effect.
Last but not least, popularity relates in a complex way to the
social psychology of the population of online content users
and capturing this intricate relation in a predictive model is
difficult. All these difficulties compound the effectiveness of
a predictive model.

Szabo and Huberman use a linear regression to predict
the long time popularity of an online content from early
measurement of user access pattern, based on an observation
where the logarithmically transformed popularity of long time
popularity of a content is highly correlated with its early
measured popularity [2]. For an all-time popular content, their
approach, however, produces large error because their purpose
is to predict the exact value of its popularity. Our approach in
this paper differs from [2] and is rooted in survival analysis.
It is used when predicting the precise lifetime of an individual
is very hard. A patient with a cancerous metastasis might
stay alive much longer than predicted by its doctors, when a
healthy young person might die in a car accident. Nevertheless,
predicting the likelihood where one will survive longer than
a threshold or another individual is possible. In particular one
can evaluate the effect of risk factors; smoking is a risk factor
that makes a smoker less likely to be alive in a long term
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compared to a non-smoking person. As in survival analysis,
we do not aim at knowing the precise popularity of a content
but our goal is to infer the likelihood (the probability) that a
content with given characteristics will attract popularity above
a given threshold.

We use a Cox proportional hazard regression model [3]. It
divides the distribution function of the observable popularity
measure into two components: (a) one that can be explained by
the given set of explanatory factors (called risk factors) and (b)
a baseline distribution function that integrates all the factors
not taken into account. This approach is frequently applied in
biostatistics to model human survival and in reliability theory.
The Cox proportional hazard regression model is suitable to
our purpose, because the regression does not assume any
parametric structure for the baseline hazard, which contains all
factors not taken into account. In fact the regression “integrates
out”, or heuristically removes from consideration, the baseline
hazard and maximizes the remaining partial likelihood. The
Cox proportional model, therefore, separates the effects of the
explanatory parameter from the effects of all other possible
factors in the baseline hazard distribution.

We validate our approach over datasets crawled from two
online thread-based discussion forums: dpreview.com and mys-
pace.com. Our data sets contain information about 267,000
threads and 2.5 million comments. Defining the popularity of
a thread is difficult as these two forums do not provide any
information about the statistics about the contents. We assume
that the number of comments in a thread and the lifetime of
the thread capture the popularity of a thread.

The contributions of our paper are:
1) This work relates the popularity of an online content to

explanatory factors (risk factors). We show that survival
analysis is applicable to predict the popularity of an
online content.

2) We implement the Cox proportional hazard regression
model with explanatory variables as risk factors to model
and predict a popularity metric.

3) We validate our approach by modeling two kinds of pop-
ularity metrics, the lifetime of threads and the number of
comments, with two different online discussion forums
and show that our proposed approach is able to predict
the likelihood of the fate of an online content after only
a short period of observation.

The remainder of this paper is structured as follows. In
Section II we explain survival analysis and the Cox propor-
tional hazard regression model and in Section III we describe
our prediction methodology. Section IV gives our experiment
results of predicting the lifetime of threads and the number
of comments of threads. Finally we conclude this paper in
Section VI.

II. BACKGROUND

In this section we give a brief introduction to survival
analysis and the Cox proportional hazard regression model.

A. Survival Analysis
Survival analysis is a branch of statistics that deals with

survival time until an event of failure or death. It is widely used

in biostatistics and reliability study. Throughout this paper, T
represents a random variable denoting the time to a death event
and t the wall clock time, respectively. Survival analysis deals
with three main functions.

The failure function F (t) is the probability to fail before
a certain time t, i.e., the Cumulative Distribution Function
(CDF) of the random variable T , F (t) = Pr {T ≤ t}. This
definition can be extended to F (k) where k is a discrete
increasing variable, such as the number comments on a thread.

The survival function S(t) is the Complementary Cumula-
tive Distribution Function (CCDF) of T , i.e., the dual of F (t),
S(t) = 1−F (t) = Pr {T > t}. It is the probability of survival
up to a certain time t.

The hazard function h(t) gives the failure rate at time t
conditioned on the instance being still alive at time t, i.e., the
expected number of failures happening at or close to time t,

h(t) =
f(t)
S(t)

= −S
′(t)
S(t)

(1)

One can define the cumulative hazard, denoted as H(t) as
the overall number of failures that are expected to happen up
to time t. The cumulative hazard is related to the survival
function through the below relation:

H(t) =
∫ t

0

h(u) du = −logS(t) (2)

For the discrete case, h(t) is replaced by h(k) defined as :

h(k) =
f(k)
S(k)

=
(

1− S(k − 1)
S(k)

)
(3)

B. Cox Proportional Hazard Regression Model

Cox proportional hazard regression [3] is a semi-parametric
approach widely used in practice. In the forthcoming, we
describe it given that the failure time is continuous. However,
the analysis can be extended in a straightforward way to the
case where failure time is a discrete variable k.

The Cox proportional hazard regression fits a regression
model defined as a parametric linear function of a set of risk
factors to an empirical failure function; it assumes that the
hazard function can represented as

h(t) = h0(t)× exp(β1x1 + β2x2 + · · ·+ βkxk). (4)

The hazard contains two components: a parametric part that
depends linearly on the risk factors and a non-parametric
part defined as baseline hazard h0(t). In other terms, hazard
function h(t) is decomposed into two components:

1) The risk factors {x1, ..., xk} that are the set of factors
that influence the survival duration. As the risk factors
are introduced into an exponential function, their effects
become proportional, i.e., adding to the risk factor has a
multiplicative effect on hazard function. Therefore, the
coefficients βi represents the relative importance of risk
factors.

2) The baseline hazard h0(t) that gives the natural risk,
i.e., the hazard when any risk factor is not present. No
assumptions is made about the form of h0(t). Using
relations between the cumulative hazard function and the
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the survival function, one can define a baseline survival
function as S0(t) = exp(−

∫ t
0
h0(t)dt).

C. Interpretation of fitting results

We explain the interpretation of a risk factor in Cox propor-
tional hazard regression with the following example shown in
Figure 1. In the example, let’s S(t), presented by the dotted
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Fig. 1. Examples for understanding risk factors(RFs) and survival function

line, the initial lifetime distribution observed empirically and
SX(t) being the remaining baseline survival function after
fitting a Cox model with an unique risk factor X = {A,B,C}.
In order words, SX(t) is the baseline hazard for the risk
factor X , i.e., the survival distribution if the risk factor X
is not present, and S(t) is the survival distribution when the
risk factor X is present. The wider is the distance between
S(t) and SX(t), the more effective is the risk factor X . To
simplify the discussion in this example, we present a survival
function as a straight line. Figure 1 implies the followings:
Due to the effect of the risk factor A, the overall lifetime is
increased. Depending on risk factors, the overall lifetime can
be increased, SA(t), or decreased, SB(t). Comparatively, risk
factor A is more significant risk factor rather than the risk
factor C.

III. PROPOSED METHODOLOGY

Formally we model the hazard function h(t) of an observ-
able popularity metric, through a Cox proportional hazard re-
gression, described in Section II. In this context, the popularity
metric can be any measure of the popularity of online contents
(e.g., the thread lifetime or the number of received comments
of a thread in a discussion forum) and the risk factor are chosen
to impact the popularity (e.g., the number of comments, the
number of contributors, and so on.)

A. Selecting a set of significant risk factors

Similarly to [2], we use as explanatory (risk) factors, early
values of the content attributes that are visible to an external
user, such as the initial number of comments and the initial
number of view.

First of all, one should avoid to use highly correlated factors
as they are redundant and can reduce the quality of the fitting.
So the first step for selecting the set of significant risk factors
is to check the correlation among the potential risk factors in
order to rule out the simultaneous usage of highly correlated
(the ones with correlation higher than 0.8) factors.

After checking that the risk factors are not highly correlated,
we can follow the approach explained in Section II-C to rank
different combination risk factors by comparing the baseline
survival obtained after fitting the Cox regression model. The
further is the resulting baseline survival function from the
empirical lifetime distribution, the more significant is this risk
factor.

B. Fitting the Cox proportional regression

After setting the set of risk factor to be studied, one can
apply the Cox proportional regression to it and try to fit
the long-term empirical final distribution of popularities that
is obtained after the last activity (comment or view) of a
content. However we will fit different regression that are
generated using different values of initial observation period.
The aim of this step is to find an observation time when the
information from risk factors are enough to obtain a good
prediction of the likelihoods of popular contents. The quality
of the prediction model is assessed by observing the resulting
baseline hazard; the further the baseline hazard goes from the
empirical distribution the better becomes the predictive power
of the variables relative to this observation period.

C. Finding a baseline hazard function for the risk factors

Up to now, we did not provide any functional form for
the baseline survival function. The Cox Proportional Hazard
regression gives a non parametric description of the baseline
survival function that can be thereafter fitted to a parametric
distribution. Frequently a Weibull distribution [4] is used. The
Weibull distribution is characterized by two parameters: a scale
parameter λ and a shape parameter γ:

f(x : λ, γ) =
γ

λ
(
x

λ
)
(γ−1)

e−( xλ )γ (5)

The CDF of a Weibull distribution is given by Equation 6.

Pr(T > t) = 1− e−( tλ )γ (6)

From Equation (7), we can present a baseline cumulative
hazard function like Equation (8).

S0(t) = e−( tλ )γ (7)

H0(t) = (
t

λ
)γ (8)

So h0(t) can be approximated by ĥ0(t) = γ
λ

(
t
λ

)γ−1
.

D. Forecasting the lifetime likelihood

Having the fitted values of the Cox regression parameters
(the βi obtained in second step) and the parameter of Weibull
distribution obtained above, one can retrieve an approximation
of the total hazard function through

h(t) =
γ

λ

(
t

λ

)γ−1

exp(β1x1 + β2x2 + · · ·+ βkxk)

and using Eq. 2 retrieves an approximation of the empirical
survival distribution.
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IV. EXPERIMENT

In this section, we describe our datasets (Section IV-A)
and present the experiment result on modeling two different
popularity metrics, the lifetime of threads (Section IV-B) and
the number of comments per thread (Section IV-C).

A. Datasets

We made two datasets, D-dpreview and D-myspace, from
online discussion forum services of forums.dpreview.com and
forum.myspace.com and we present the brief description of
the datasets in Table I. Dataset D-dpreview contains the

Dataset Service Topic Start - End

D-dpreview forum.dpreview.com Canon 40D-10D 2003/01 ∼ 2007/12
D-myspace forums.myspace.com Music - General 2004/01 ∼ 2008/04

dataset # threads (T) # comments (C) Uall UT UC

D-dpreview 140,524 1,496,808 44,955 27,989 41,269
D-myspace 127,607 1,038,989 - - -
Uall: the number of unique posters
UT : the num. of unique thread posters, UC : the num. of unique comment posters

TABLE I
DESCRIPTION OF DATA SETS FOR EXPERIMENT

information of the entire threads and comments of Canon
EOS 40D-10D discussion forum for 5 years from 2003 to
2007. We made D-myspace by crawling all of threads and
comments of Music-General forum from the creation of the
forum to May 2008. For each post, a thread or a comment, we
collected its posted timestamp and when making D-dpreview
we additionally crawled the anonymized poster identifier for
each post2. Overall two datasets have more than 267,000
threads and 2.5 millions of comments and in D-dpreview there
are about 45,000 unique posters.

Before applying our approach to model the lifetime of
threads and the number of comments of threads, we need to
define the lifetime of a thread. It can be defined in many ways.
We will use the following definition: the lifetime of a thread is
the time difference between the posting time of the thread and
the posting time of its last comment. However it is not possible
to decide if a comment is the definitive last comment. We have
therefore to define the lifetime of a thread by assuming that
a thread being dead if it does not receive any new comment
during a thread expiration time. To decide the expiration time
we use inter-comments time and set this value to five days
(resp. two days ) for D-dpreview (resp. D-myspace) as only
0.5% of comments arrive later3.

B. Modeling the Lifetime of Threads

In order to model the lifetime of threads of discussion fo-
rums, we use the information from user comments as explana-
tory factors because as an external observer, we can access to
these information. From the information, we extract two kinds
of information, a) overall user interests on a discussion thread
and b) temporal user interests on it. About the overall user

2We could not collect any poster identifier for D-myspace because the
information was hidden.

3Indeed other expiration time can be used such as 99% or 99.9%.

interests on a thread, we assume that a user leaves comments
on a thread that is interesting to her. Based on this assumption,
we consider the following three potential explanatory factors.
The last two factors are used to separate the effects of author
herself from others.

1. the overall number of comments of a thread
2. the number of comments by author of its original post
3. the number of unique posters except author of the
original one

About temporal user interests, we used the inter-commenting
times. To receive a high rate of comments for a thread can be
a sign when the content is interesting. Thus we consider the
following four information as potential factors.

4. the time until the first comment
5. the median of inter-comments time
6. the mean of inter-comments time
7. the variance of inter-comments time

Among the above seven potential explanatory factors, we
rule out useless factor which do not capture For this, in Figure
2 we plot the empirical survival function of D-dpreview and
seven baseline survival functions with seven factors. The line
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Fig. 2. Selecting significant risk factors (D-dpreview)

named as Empirical CCDF shows the survival function, i.e., the
CCDF of the empirical lifetime distribution, obtained over D-
dpreview and each curve tagged by a number between 1 and 7
is the baseline survival function when the explanatory factor of
the tagged number is used as a risk factor for a Cox regression
model. This figure shows that out of seven, two distributions
tagged by 2 and 5 are almost same as Empirical CCDF. So we
do not use these factors as risk factors and in the following
we consider the five potential explanatory factors as below.

1. the number of comments,
3. the number of comments by a thread poster,
4. the number of comment contributors,
6. the mean of inter-comment time,
7. the variance of inter-comment time.

In order to excluding redundant factors among the five
factors, we use correlation coefficient. Correlation coefficient
R(x, y) between two variables, x and y, is defined as:

R(x, y) =
covariance(x, y)√

variance(x)× variance(y)
, (9)

where |R(x, y)| ∼ 1 means that they are highly correlated but
|R(x, y)| ∼ 1 implies that they are lowly correlated.

Table II shows the correlation coefficient between two
factors and it implies that the first explanatory factor is highly
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RF 1 3 4 6 7
1 1.0000 0.6429 0.9124 -0.0004 0.1000
3 0.6429 1.0000 0.4777 0.1000 0.1000
4 0.9124 0.4777 1.0000 0.0000 0.1000
6 -0.0004 0.1000 0.0000 1.0000 0.8530
7 0.1000 0.1000 0.1000 0.8530 1.0000

TABLE II
CORRELATION COEFFICIENT BETWEEN TWO RISK FACTORS (RFS).

EACH NUMBER FOR RF IS THE SAME ONE USED IN FIGURE 2

correlated to the fourth one. Thus, instead of using both
factors, we use only the first one because it captures much
more information than the fourth one as illustrated in Figure
2. Now with four explanatory factors, named with 1, 3, 6, and
7, we make all possible combinations of the factors and then
present baseline survival distributions when each combination
of factors is used as risk factors in Figure 3. Since based
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Fig. 3. Ranking the different combinations of risk factors
The rightest line shows the empirical thread lifetime.

on the figure to use all four factors makes the best baseline
survival function among them, we use the four factors in our
modeling. For D-myspace, we use three factors by excluding
3. the number of comments by a thread poster because we do
not have user identifier information in D-myspace.

In Figure 4(a) and 4(d), we plot S(t) and S0(t) when we
introduce the risk factors to Cox proportional hazard models
with D-dpreview and D-myspace, respectively. In order to
present S0(t) as a functional form, we fit a Weibull distri-
bution for each baseline hazard function and we present the
fitted Weibull distribution for each baseline failure function,
1 − S0(t), in Figure 4(b) and 4(e). From these fittings we
can represent a cumulative baseline hazard function with scale
and shape parameters of the Weibull distribution and finally
we find that H0(t) are ( t

0.4286 )0.9909 for D-dpreview and
( t
0.101 )0.8616 for D-myspace.
In Figure 4(c) and Figure 4(f) we show the process to find

the minimum observation time for D-dpreview and D-myspace.
In each figure, we plot the empirical lifetime distribution
(empirical CCDF), the baseline survival function captured
during the whole thread duration, and a set of baseline survival
functions captured a certain observation time. Remind that
the gap between an empirical CCDF and a baseline survival
function during the whole thread duration is the information
based on the whole thread lifetime. Thus the aim of this step
is to find a certain time point where the information captured
from the time is close to the information captured from the
whole lifetime. For instance, in Figure 4(c) ‘BSF after 1

day’ shows the baseline survival function when user comment
information captured during the first day is introduced to risk
factors of a Cox proportional hazard model. The curve of ‘BSF
after 1 day’ is too close to the curve of ‘empirical CCDF’. It
means that the information captured during the first one day
is not enough to predict the lifetime of threads of D-dpreview.
Thus based on these figures, we say that we are able to closely
predict the empirical lifetime of D-dpreivew and D-myspace by
observing the first five to six days and 24 hours, respectively.

By the nature of survival analysis, long-lived instances
likely have less hazard than short-lived instances. To see
our models follows this fact, we plot risk factor component
(β1x1 + β2x2 + ...+ βkxk) against the lifetime of threads in
Figure 5. Based on this figure we verify that our two models
for two datasets produce relatively less hazard values for long-
lived threads and relatively much hazard values for short-lived
threads4.

(a) D-dpreview (b) D-myspace

Fig. 5. risk factor component (x1β1...xkβk) vs. the lifetime of threads

To see the relation between an observation time and the
risk factor component generated from our models, we show
risk factor component against the lifetime of threads varying
observation time in Figure 6. In Figure 6(a), we plot the
lifetime of threads against their risk factor component with the
information of explanatory factors captured during the first day
and we could not see clear correlation between them. It means
the information during the first day is not enough to predict the
popularity metric with our models. As the observation time,
however, is getting longer, we can see that our model calibrates
the correlation between them and predict the popularity of
thread lifetime. In Figure 6(e) about D-myspace, we do not
see the correlation between thread lifetime and hazard values,
which comes from three-hour observation, but after 24 hours
of the creation of threads we can see that the correlation
between the lifetime of threads and hazard values with the
model from our approach.

C. Modeling the Number of Comments

We apply our approach to model and predict the number
of comments of threads from D-dpreview with the same seven
potential explanatory factors used in the previous section. First,
to rule out useless factors when modeling the number of
comments, we plot the empirical distribution of the number
of comments per thread and seven baseline survival functions

4We use the word ‘relatively’ in this sentence because our approach aims
to model and predict the likelihood of an objective metric of popularity, not
to predict an exact value of the objective metric.
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(c) Predicting the lifetime of threads
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(d) Finding a baseline survival function
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(e) Fitting it with a Weibull dist.
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(f) Predicting the lifetime of threads

Fig. 4. Prediction of the lifetime of threads from D-dpreview (upper figures) and D-myspace (lower figures)

(a) after 1 day (b) after 3 days (c) after 5 days (d) after the whole lifetime

(e) after 3 hours (f) after 12 hours (g) after 24 hours (h) after the whole lifetime

Fig. 6. Risk factor component vs. Thread lifetime, varying observation time.(The upper three figures comes from D-dpreview and the bottom
figures comes from D-myspace.)

with seven factors in Figure 7(a). Based on this figure, we
choose the following three factors: the number of comments,
the number of comments by a thread poster, and the number
of unique posters. Then we check whether any two factors are
highly correlated with Table II. Since any two factors are not
highly correlated, we now make all possible different combi-
nations with the factors. With the combinations, in Figure 8,
we plot baseline survival functions when each combination of
factors is used for risk factors. This figure shows that three
combinations of factors illustrated by straight lines capture
more than other ones presented by dotted lines. Amongst three
combinations, we use all three explanatory factors as the risk
factors for our model to predict the number of comments.

With these factors, we compute their baseline survival func-
tion and present it as well as the empirical survival function
in Figure 7(b). To provide the baseline survival function as a
functional form, we fit it with a Weibull distribution and show

0 20 40 60 80 100 120 140 160
10−4

10−3

10−2

10−1

100

The number of comments per thread

Ba
se

lin
e 

su
rv

iv
al

 fu
nc

tio
n

fo
r g

iv
en

 ri
sk

 fa
ct

or
s

 

 

1, 3, 4
1, 3
3, 4
1, 4
1
3
4
Empirical survival

Fig. 8. Ranking the different combinations of risk factors

the fitting result in Figure 7(c). Since the scale and shape
parameters of the fitted Weibull distribution are 7.4189 and
1.8496, respectively, the cumulative baseline hazard function
H0(t) is determined as ( t

7.4189 )1.8496.
Now we find the minimum observation time to predict the

number of comments per thread. For this, we vary observation
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Fig. 7. Predicting the number of comments of online discussion forum threads
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Fig. 10. Risk factor component vs. Number of comments per thread (varying observation time)

time as shown in Figure 9. This figure implies that when
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we use the information captured during the first 24 hours,
the information for risk factors is not enough to predict the
number of comments. The baseline survival function using
the information observed for more than 2 days, however, is
close to the baseline survival function based on the whole
observation. Thus, we could closely predict the number of
comments of threads after observing the information on risk
factors for more than 2 days.

In Figure 10, we show risk factor component vs. the number
of comments per thread, varying observation time. Especially,
Figure 10(d) shows the correlation between a hazard value
and the number of comments of a thread when all thread
are dead. It clearly implies that while a thread with much
hazard has less comments, a thread with less hazard has much
comments. In other words, as the values of risk factors of a
thread are increasing, the hazard of the thread is decreasing
and its number of comments is increasing. Now let us visit
Figure 10(a), 10(b), and 10(c). In Figure 10(a), we see that
hazard values of almost all thread are high by positioning at
the right part of x-axis, but the hazard values are decreasing
as the observation duration is getting longer in Figure 10(b)
and 10(c).

Now we bring an application to predict threads, each of

which has more than 100 comments. We find that there are
1,406 threads which have received more than 100 comments in
D-dpreview and in Figure 11(a) we plot how many comments
they received after one, two, and three days. After one day
(two and three days) about 24% (56% and 73%) threads
among 1,406 have more than 100 comments (respectively.)
The following three figures show that how accurately we can
predict them and what the mean of comments of mis-predicted
threads after one, two, and three days. For instance, when
we choose -200 as a threshold of risk factor component, we
can correctly find about 80% of threads after one day, based
on Figure 11(b). We additionally have mis-predictied threads
(‘false positive’ threads), which the mean of their comments
is about 63. In a similar way, we can identify about 80% of
correct threads after two days based on Figure 11(c) when
taking -355 of a threshold. Remind that the mis-predicted
threads by our model are somehow popular even though they
are less popular than correctly identified ones, because our
approach is based on the likelihood of the objective metric.
Thus one who adopts our approach to model and predict an
objective metric of the popularity of a kind of online contents
can choose her threshold which satisfies her aim of prediction
in terms of a precision and required observation time.

V. RELATED WORK

In this section, we briefly describe other literatures related
to our work.
• Survival analysis

Survival analysis [5] has been applied to various areas,
such as bio-medical science, sociology, and epidemics
[6], [7], [8], [9]. Among the methodologies for survival
analysis, Cox proportional hazard regression model [3],
which is a semi-parametric survival analysis methodol-
ogy, has been widely used [10], [11], [12]. In this paper,
we first adopted survival analysis and Cox proportional
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Fig. 11. Predicting the threads to have more than 100 comments. (In (b), (c), (d), straight lines are true positive values and dotted lines are mean values of
false negative values.)

regression approach to model and predict the popularity
of online contents.

• Analysis on Threads and Comments
The authors of [13], [14] analyzed the posts and com-
ments of Slashdot. In detail, the authors of [13] explained
the behaviors of inter-posts times with statistical mod-
els and the authors of [14] focused on to analyze the
dynamics of posts and users. There was a macroscopic-
level analysis result, such as analysis on the average
views and incoming links about posts and comments with
web logs in [15]. In [16], [17] the information of user
comments was used to understand user intention, and in
[18] to find influential authors based on user comments
was investigated.

• Modeling Inter-Posting or Predicting Popularity
In [13], authors modeled post-comment-interval with
four different statistical models and they predicted in-
termediate and long-term user activities. [2] proposed a
methodology to predict the popularity of online contents
based on a finding, the correlation of popularity between
early and later times. Then the authors proposed three
prediction models and validated them with Youtube and
Digg datasets. In [19], authors built a co-participation
network among Digg users with comment information of
their Digg dataset and proposed a method to predict the
popularity of online using an entropy measure explaining
user interest peak and the co-participation network. Our
work is different in a point that we model and predict the
popularity of online contents with a set of explanatory
factors by applying survival analysis and Cox propor-
tional hazard model.

VI. CONCLUSION

In this paper, we proposed a methodology about macro-
scopic prediction of the popularity of online contents, which
is to infer the likelihood that a content will attract a popularity.
To model and predict an objective metric of the popularity of
online contents we apply Cox proportional hazard regression
model for a set of given explanatory factors. We validated
our approach by predicting two kinds of popularity features
(thread lifetime and the number of comments per thread) with
two datasets from two discussion online forums. In the exper-
iments, we showed that our approach successfully modeled a
popularity metric with a set of risk factors and the popularity
metric was determined by the information represented by the
risk factors.
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