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Congestion control? Again???

• Numerous congestion control algorithms have been 
proposed since Jacobson’s TCP

• Performance of congestion control fundamentally 
depends on congestion feedback

• New forms of congestion feedback have enabled 
innovative congestion control behavior
• Packet loss, latency, bandwidth, ECN, in-network (RCP, XCP), etc.
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Congestion control challenges in DCN

• Datacenters’ unique environment requires congestion control 
to be finer-grained than ever
• Prevalence of latency sensitive flows (partition/aggregate workload)

• Every 100ms slow down in Amazon = 1% drop in sales*

• Dominance of queuing delay in end-to-end latency

• Accurate and fine-grained congestion feedback is a must!
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*Cracking latency in cloud, http://www.datacenterdynamics.com/ 



The most popular choice so far: ECN

• ECN (Explicit Congestion Notification) detects congestion
earlier than packet loss, but…
• It still provides very coarse-grained feedback (binary)

• DCTCP puts in more effort to improve granularity
• Other ECN-based work also employ the same technique 

• Pursuit of better congestion feedback leads to 
customized in-network feedback  hard to deploy
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1 2 3 1 packet marked  congestion probability: 33%

2 packets marked  congestion probability: 66%



Our proposal: latency feedback

• Network latency is a good indicator of congestion

• Latency congestion feedback has a long history 
from CARD, DUAL, and TCP Vegas in wide-area networks
• Used feedback: RTT measured in TCP stack

• We revisit latency feedback for use in datacenter networks
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Can we reuse the same latency feedback from TCP Vegas?



Challenges in latency feedback in DC

• Network latency changes in µs time scale in datacenters

• Differentiating network latency change from other noise
becomes a challenging task
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Measuring network latency accurately in microsecond scale is crucial

Datacenter Wide-area

Link speed 10 Gbps 100 Mbps

Transmission delay 1.2 μs 120 μs

Queueing delay (10 pkts) 12 μs 1.2 ms



Evaluation of TCP stack measurement

• We test whether RTT measured in TCP stack can indicate
network congestion level in datacenters

• We first evaluate the case of no congestion

• Ideally, all the RTT measurements should have the same value
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Inaccuracy of TCP stack measurement
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Latency feedback from stack cannot indicate network congestion level

710μs = 592 MTU packets 
at 10Gbps



Why is TCP stack measurement unreliable?

• Sources of errors in RTT measurement
• End-host stack delay

• I/O batching

• Reverse path delay

• Clock drift
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Refer to our paper



Identifying sources of errors (1)

• End-host stack delay
• Packet I/O, stack processing, interrupt handling, CPU scheduling, etc.
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Removing stack delay (sender-side)

• Solution #1: Driver-level timestamping (software)
• We use SoftNIC*, an Intel DPDK-based packet processing platform
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* SoftNIC: A Software NIC to Augment Hardware, Sangjin Han, Keon Jang, Shoumik
Palkar, Dongsu Han, and Sylvia Ratnasamy (Technical Report, UCB)



Removing stack delay (sender-side)

• Solution #2: NIC-level timestamping (hardware)
• We use Mellanox ConnectX-3, a timestamp-capable NIC
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Removing stack delay (receiver side)

• Solution #3: Timestamping also at the receiver host
• We subtract receiver node’s stack delay from RTT
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Identifying sources of errors (2)

• Bursty timestamps from I/O batching
• Multiple packets acquire the same timestamp in network stack
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Removing bursty timestamps (driver)
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Removing bursty timestamps (NIC)

• Even NIC-level timestamping generates bursty timestamps
• NIC timestamps packets after DMA completion,

not when sending/receiving packets on the wire

• We calibrate timestamps based on link transmission delay
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Improved accuracy by our techniques
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Accuracy of HW timestamping is sub-microsecond scale
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Can we measure accurate queuing delay?

• Using our accurate RTT measurement, 
we infer queueing delay (queue length) at switch

• Queueing delay is calculated as (Current RTT – Base RTT)
• Current RTT: RTT sample from current Data/ACK pair

• Base RTT: RTT measured without congestion (minimum value)
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Switch Queue

One 1500 byte packet in 1G switch queue
= 12us increase in RTT



Evaluation of queuing delay measurement

• Traffic
• Sender 1 generates 1Gbps full rate TCP traffic

• Sender 2 generates an MTU (1500B) Ping packet every 25ms

• Measurement
• Sender 1 measures queueing delay

• Switch measures ground-truth queue length
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Accuracy of queuing delay measurement
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• We can measure queueing delay in single packet granularity
• Ground truth from switch matches with delay measurement



DX: latency-based congestion control

• We propose DX, a new congestion control algorithm 
based on the accurate latency feedback
• Goal: minimizing queueing delay while fully utilizing network links

• DX behavior is straightforward
• When queuing delay is zero, DX increases window size

• When queuing delay is positive, DX decreases window size
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How much should we increase or decrease?



DX window calculation rule

• Additive Increase: one packet per RTT

• Multiplicative Decrease: proportional to the queuing delay

• Challenge: How can we keep 100% utilization after decrement?
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Q: queueing delay
V: normalizer



DX example scenario
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Q > 0  Decrease window 



Challenge: sender #1’s view
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CWND=20+1

CWND=20+1

CWND=20+1

How much should I decrease?

??? Simple assumption:
Other senders have the same window size

How much congestion am “I” responsible for?

New window size can be calculated from
Link capacity, RTT, and current window size 

*Refer to our paper for detailed derivation 



Implementation

• We implement timestamping module in SoftNIC
• Timestamp collection

• Data and ACK packet match

• RTT and queueing delay calculation

• Bursty timestamp calibration

• We implement DX control algorithm in Linux 3.13 kernel
• 200+ lines of code addition (mainly in tcp_ack())

• Use of TCP option header for storing timestamps
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Evaluation methodology

• Testbed experiment (small-scale)
• Bottleneck queue length in 2-to-1 topology

• Ns-2 simulation (large-scale)
• Flow completion time of datacenter workload in a toy datacenter

• More in our paper

• Queueing delay and utilization with 10/20/30 senders

• Flow throughput convergence

• Impact of measurement noise to headroom

• Fairness and throughput stability
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Testbed experiment setup

• Two senders share a bottleneck link (1Gbps/10Gbps)

• Senders generate DX/DCTCP traffic to fully utilize the link 

• We measure and compare the queue length of DX/DCTCP
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Testbed experiment result at 1Gbps
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DX reduces median queuing delay by 5.33 times from DCTCP



Testbed experiment result at 10Gbps
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Hardware timestamping achieves further queueing delay reduction 



Simulation with datacenter workload

• Topology
• A 3-tier fat tree with 192 nodes and 56 switches

• Workload
• Empirical web search workload from production datacenter
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FCT of search workload simulation
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DX effectively reduces the completion time of small flows



Conclusion

• The quality of congestion feedback fundamentally governs 
the performance of congestion control  

• We propose to use latency feedback in datacenters
with support from our SW/HW timestamping techniques

• We develop DX, a new latency-based congestion control,
which achieves 5.3 times (1Gbps) and 1.6 times (10Gbps) 
queueing delay reduction than ECN-based DCTCP 
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