
Accurate Latency-based
Congestion Feedback for Datacenters

Changhyun Lee
with Chunjong Park, Keon Jang*, Sue Moon, and Dongsu Han

KAIST *Intel Labs

USENIX Annual Technical Conference (ATC)

July 10, 2015

Congestion control? Again???

• Numerous congestion control algorithms have been
proposed since Jacobson’s TCP

• Performance of congestion control fundamentally
depends on congestion feedback

• New forms of congestion feedback have enabled
innovative congestion control behavior
• Packet loss, latency, bandwidth, ECN, in-network (RCP, XCP), etc.

2

Congestion
feedback

Reaction

Control algorithmNetwork

Congestion control challenges in DCN

• Datacenters’ unique environment requires congestion control
to be finer-grained than ever
• Prevalence of latency sensitive flows (partition/aggregate workload)

• Every 100ms slow down in Amazon = 1% drop in sales*

• Dominance of queuing delay in end-to-end latency

• Accurate and fine-grained congestion feedback is a must!

3
*Cracking latency in cloud, http://www.datacenterdynamics.com/

The most popular choice so far: ECN

• ECN (Explicit Congestion Notification) detects congestion
earlier than packet loss, but…
• It still provides very coarse-grained feedback (binary)

• DCTCP puts in more effort to improve granularity
• Other ECN-based work also employ the same technique

• Pursuit of better congestion feedback leads to
customized in-network feedback  hard to deploy

4

1 2 3

1 2 3 1 packet marked  congestion probability: 33%

2 packets marked  congestion probability: 66%

Our proposal: latency feedback

• Network latency is a good indicator of congestion

• Latency congestion feedback has a long history
from CARD, DUAL, and TCP Vegas in wide-area networks
• Used feedback: RTT measured in TCP stack

• We revisit latency feedback for use in datacenter networks

5

Can we reuse the same latency feedback from TCP Vegas?

Challenges in latency feedback in DC

• Network latency changes in µs time scale in datacenters

• Differentiating network latency change from other noise
becomes a challenging task

6

Measuring network latency accurately in microsecond scale is crucial

Datacenter Wide-area

Link speed 10 Gbps 100 Mbps

Transmission delay 1.2 μs 120 μs

Queueing delay (10 pkts) 12 μs 1.2 ms

Evaluation of TCP stack measurement

• We test whether RTT measured in TCP stack can indicate
network congestion level in datacenters

• We first evaluate the case of no congestion

• Ideally, all the RTT measurements should have the same value

7

10Gbps (TCP)

Sender Receiver

Inaccuracy of TCP stack measurement

8

Latency feedback from stack cannot indicate network congestion level

710μs = 592 MTU packets
at 10Gbps

Why is TCP stack measurement unreliable?

• Sources of errors in RTT measurement
• End-host stack delay

• I/O batching

• Reverse path delay

• Clock drift

9

Refer to our paper

Identifying sources of errors (1)

• End-host stack delay
• Packet I/O, stack processing, interrupt handling, CPU scheduling, etc.

10

NIC

Driver

Network stack

Application

Timestamping

NIC

Driver

Network stack

Application

Sender Receiver

RTT measured from kernel gets affected by host delay jitter

Measured RTT
= ACK TS – Data TS

Data SENT TS

ACK RCVD TS

Removing stack delay (sender-side)

• Solution #1: Driver-level timestamping (software)
• We use SoftNIC*, an Intel DPDK-based packet processing platform

11

NIC

SoftNIC

Network stack

Application

Timestamping

NIC

SoftNIC

Network stack

Application

Sender Receiver

Measured RTT
= ACK TS – Data TS

Data SENT TS

ACK RCVD TS

* SoftNIC: A Software NIC to Augment Hardware, Sangjin Han, Keon Jang, Shoumik
Palkar, Dongsu Han, and Sylvia Ratnasamy (Technical Report, UCB)

Removing stack delay (sender-side)

• Solution #2: NIC-level timestamping (hardware)
• We use Mellanox ConnectX-3, a timestamp-capable NIC

12

NIC

SoftNIC

Network stack

Application

Timestamping NIC

SoftNIC

Network stack

Application

Sender Receiver

Measured RTT
= ACK TS – Data TS

Data SENT TS

ACK RCVD TS

Removing stack delay (receiver side)

• Solution #3: Timestamping also at the receiver host
• We subtract receiver node’s stack delay from RTT

13

NIC

SoftNIC

Network stack

Application

Timestamping

NIC

SoftNIC

Network stack

Application

Sender Receiver

Timestamping

Measured RTT
= (ACK RCVD TS – Data SENT TS)
– (ACK SENT TS – Data RCVD TS)

Data SENT TS

Data RCVD TS

ACK SENT TS

ACK RCVD TS

Identifying sources of errors (2)

• Bursty timestamps from I/O batching
• Multiple packets acquire the same timestamp in network stack

14

NIC

Driver

Network stack

Application

Timestamping

Sender

D1 D2 D3

NIC

Driver

Network stack

Application

Receiver

Timestamps do not reflect the actual sending/receiving time

Removing bursty timestamps (driver)

15

NIC

SoftNIC

Network stack

Application

D1 D2 D3 D4 D5 D6

Queue

Timestamping

• SoftNIC stores bursty packets from upper-layer in a queue
and pace before timestamping

Removing bursty timestamps (NIC)

• Even NIC-level timestamping generates bursty timestamps
• NIC timestamps packets after DMA completion,

not when sending/receiving packets on the wire

• We calibrate timestamps based on link transmission delay

16

Improved accuracy by our techniques

17

Accuracy of HW timestamping is sub-microsecond scale

SW Best

HW Best

Can we measure accurate queuing delay?

• Using our accurate RTT measurement,
we infer queueing delay (queue length) at switch

• Queueing delay is calculated as (Current RTT – Base RTT)
• Current RTT: RTT sample from current Data/ACK pair

• Base RTT: RTT measured without congestion (minimum value)

18

Switch Queue

One 1500 byte packet in 1G switch queue
= 12us increase in RTT

Evaluation of queuing delay measurement

• Traffic
• Sender 1 generates 1Gbps full rate TCP traffic

• Sender 2 generates an MTU (1500B) Ping packet every 25ms

• Measurement
• Sender 1 measures queueing delay

• Switch measures ground-truth queue length

19

Sender 1

Receiver

Sender 2

1Gbps (TCP)

1500B periodically

Accuracy of queuing delay measurement

20

• We can measure queueing delay in single packet granularity
• Ground truth from switch matches with delay measurement

DX: latency-based congestion control

• We propose DX, a new congestion control algorithm
based on the accurate latency feedback
• Goal: minimizing queueing delay while fully utilizing network links

• DX behavior is straightforward
• When queuing delay is zero, DX increases window size

• When queuing delay is positive, DX decreases window size

21

How much should we increase or decrease?

DX window calculation rule

• Additive Increase: one packet per RTT

• Multiplicative Decrease: proportional to the queuing delay

• Challenge: How can we keep 100% utilization after decrement?

22

Q: queueing delay
V: normalizer

DX example scenario

23

Q > 0  Decrease window

Challenge: sender #1’s view

24

CWND=20+1

CWND=20+1

CWND=20+1

How much should I decrease?

??? Simple assumption:
Other senders have the same window size

How much congestion am “I” responsible for?

New window size can be calculated from
Link capacity, RTT, and current window size

*Refer to our paper for detailed derivation

Implementation

• We implement timestamping module in SoftNIC
• Timestamp collection

• Data and ACK packet match

• RTT and queueing delay calculation

• Bursty timestamp calibration

• We implement DX control algorithm in Linux 3.13 kernel
• 200+ lines of code addition (mainly in tcp_ack())

• Use of TCP option header for storing timestamps

25

Evaluation methodology

• Testbed experiment (small-scale)
• Bottleneck queue length in 2-to-1 topology

• Ns-2 simulation (large-scale)
• Flow completion time of datacenter workload in a toy datacenter

• More in our paper

• Queueing delay and utilization with 10/20/30 senders

• Flow throughput convergence

• Impact of measurement noise to headroom

• Fairness and throughput stability

26

Testbed experiment setup

• Two senders share a bottleneck link (1Gbps/10Gbps)

• Senders generate DX/DCTCP traffic to fully utilize the link

• We measure and compare the queue length of DX/DCTCP

27

Sender 1

Receiver

Sender 2

1G/10G

Testbed experiment result at 1Gbps

28

DX reduces median queuing delay by 5.33 times from DCTCP

Testbed experiment result at 10Gbps

29

Hardware timestamping achieves further queueing delay reduction

Simulation with datacenter workload

• Topology
• A 3-tier fat tree with 192 nodes and 56 switches

• Workload
• Empirical web search workload from production datacenter

30

C C C C C C C C

A A

T T T T

FCT of search workload simulation

31

0KB - 10KB 10MB -

2.6x faster

6.0x faster

1.2x slower

1.1x slower

DX effectively reduces the completion time of small flows

Conclusion

• The quality of congestion feedback fundamentally governs
the performance of congestion control

• We propose to use latency feedback in datacenters
with support from our SW/HW timestamping techniques

• We develop DX, a new latency-based congestion control,
which achieves 5.3 times (1Gbps) and 1.6 times (10Gbps)
queueing delay reduction than ECN-based DCTCP

32

