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1. Introduction

Internet phone has recently gained much attention as a computer-to-computer application
for conducting voice conversations over the Internet....Software products are now
available commercially or as freeware. Examples of commercial packages include
Cooltalk 1.0 by Netscape Comm. Corp and Internet Phone 3.2 by VocalTec Inc. A recent
survey of existing products is given in [VEN]. Examples of freeware packages include
nevot [SCH2] and vat [JAC]. The present main attractive feature of Internet phone is
that there are basically no direct charges associated with the calls that aré¢ made. One can
use it to make local, long-distance, or international phone calls between computers on the
Internet without any significant service charges. Systems are also being developed
currently to interconnect Internet phone calls with the public switched telephone network.
The present main disadvantage of internet phone is that it relies on the best effort service
that is provided by the existing Internet. Consequently, the perceived quality of the voice
communication is variable. Measurements on routes indicate that end-to-end Internet
packet losses can be quite high [BOL,SAN]. Losses in the range of 30 - 50% are not
atypical [YAJ]. The delay is also quite variable, depending not only on the existing
traffic but also on the number of routers and ‘firewalls’ that may be traversed. When the
conditions are favorable, however, near toll quality can be reached. Another disadvantage
is that, except for a few experimental audio conferencing tools, most commercial
products are incompatible and standards do not yet exist.

At this point in time, it is unclear what the future may hold for Internet phone.
The extent to which it evolves depends, of course, on how the Internet evolves in terms of
bandwidth and real-time service offerings. A variety of opinions can be heard in the press
and in the computer-communications and telecommunications communities. At one
extreme, Internet phone is viewed as a novelty with no real potential. At the other
extreme, it is viewed as the ‘third-generation’ of telephony - the first generation being
that based on analogue circuit-switching and the second being that based on digital
circuit-switching. Whatever the opinions may be today, the reality is that Internet phone
is growing in use among Internet users. It will also be offered as a ‘value-added’ feature
by a growing number of Internet service providers (ISPs) in the near future.

In order for an ISP to offer Internet phone service at a certain level of quality
either over a private ‘engineered’ network or subnetworks that are owned or operated by
other organizations, it 1s necessary that one have an understanding of the limits of packet
loss and delay that can reasonably be tolerated. In the case of a private network, one can
then dimension and plan the network appropriately to meet the traffic demands of Internet
phone customers and satisfy the loss and delay limits. In the case where an ISP is
providing Internet phone service using the subnetworks of other organizations, one can
then plan out a loss and delay ‘budget’ for the subnetworks that are to be traversed so that
the end-to-end loss and delay limits are satisfied and the desired overall level of quality is



achieved. In the standards making process, it is also necessary that one be able to
quantify these limits.

The determination of the loss and delay limits for telephony of a reasonable
quality over the Internet is not a simple problem. For circuit-switched voice, the
maximum tolerable delay is well known to be 400ms or-less [ITU]. This delay limit is
dependent on the end-to-end delay that can be tolerated before a voice conversation
becomes awkward. It also depends on the limits that can be handled by echo cancellers.
In computer-to-computer Internet telephony, however, the delay and loss are variable and
there is a full-duplex end-to-end channel so that there is no echo problem (in the
traditional sense). Playout algorithms [MOO,RAM] at the receivers are also used to
compensate to a certain extent for variable delay. The quality that is expected of Internet
telephony may also be lower than that of conventional telephone service depending on the
price that a Gser may be charged by an ISP in the future. Hence, the delay and loss limits
may be significantly different from those associated with conventional public telephone
quality. Moreover, Internet phone is designed to be simply a voice communication
device. Thereforg, it does not need to faithfully reproduce the signals required to support
analogue modem and fax devices.

The delay and loss requirements of packet voice have been studied extensively in
the past (see, for example, [COH,JAY,MON]). However, given the particularities of the
Internet architecture, the implementation details of different products, and the recent
evolution of networking and computing, it is now necessary to re-examine the issues in a
more modern context. Details that now need to be considered include the packetization
period, Internet architecture, protocol stack overheads of IP, UDP, and RTP [SCH4],
silence/talkspurt detection algorithms, playout delay adjustment algorithms, encoding and
compression schemes, and error recovery mechanisms. To evaluate the delay and loss
limits for different parameter settings, it is necessary to evaluate the voice quality under a
multitude of scenarios. This should be done in a controlled experiment. There are two
possible approaches in which such an experiment might be carried out. In the first
approach, we could build a real-time simulator and have pairs of users evaluate voice
quality in real-time as a function of network loss and delay. In the second approach, we
could build an off-line simulator, record voice conversations, run them through the
simulator off-line for various loss and delay scenarios, and then evaluate the resulting
voice quality off-line. A basic problem with the first approach is that real-time
simulation is, in general, not feasible since too much processing is required if we want to
include the effects of, for example, a multitude of background Internet phone calls and
other data traffic, complex loss and delay processes, or multiple routers and subnetworks.
The problem with the second approach is that if we simpl); run recorded voice
conversations through an off-line simulator, then we cannot properly capture the effect
that the end-to-end delay has on the interaction between the speakers.

In this paper, we develop a two-way voice simulation tool for Internet phone
performance analysis and evaluation. The tool can be used off-line to simulate two-way
phone conversations while taking into account implementation details, parameter choices,



user-specifiable Internet loss and delay characteristics, other background Internet phone
traffic and data traffic, and the effect of multiplexing at the access links connecting an ISP
to the Internet. Since the actual simulation is done off-line, the tool is along the lines of
the second approach described above. Apart from being of use to determine the delay and
loss limits for Internet phone, the simulation tool can also be used for the qualitative
validation of analytically based sizing models for access.links and other multiplexing
points. In other words, we can use the simulator to get a feeling for what real voice
conversations sound like when they pass through a multiplexing point that has been sized
using some mathematical model. N

The principal novel contribution in the simulator is the notion of modeling
explicitly the inter-speaker synchronization that exists between the talkspurts in the
original unperturbed two-way voice conversation. By doing this, wc are able to simulate
more realistically the effect that variable end-to-end delays have on the interaction
between the speakers, vary the experiment in a controlled manner, and thereby better
determine in a qualitative manner the delay and loss limits for reasonable phone quality.
To the best of our knowledge, such a two-way synchronized voice simulation technique
has not been considered previously. Of course, the simulator has certain limitations since
it cannot capture how delay and loss affects the information content (e.g. extra
interruptions and repetitions due to excessive delay) in a two-way interaction. The idea
for the two-way simulation technique was inspired by [BRAZ2], where an analytical
Markov model is developed for talkspurt generation in a two-way voice conversation.
This model is a generalization of the one-way two-state Markov model that has been
adopted almost invariably in analytical packet voice studies to date (see, for example,
[DAL,GRU,HEF,LEE,SRI]). The two-way model is much more complex than the one-
way model but it is an attempt to capture in an analytical model the synchronization of
talkspurts in a two-way conversation.

In the following section, we first provide a functional view of the Internet phone
simulation tool and explain in general terms how a two-way phone conversation is
synchronized in the simulation. In Section 3, we then go into more detail and describe
how we first record two-way voice conversations using a pair of Sun SPARCstations and
process the resulting audio files. We also explain how silence detection and
packetization is carried out. In Section 4, we explain in more detail how we synchronize
the talkspurts in the simulated two-way conversation. In Section 5, we provide a
complete logical block diagram of the simulation tool to show how we proceed from
collecting audio samples to processing the simulation output and constructing the final
audio files that can be played out and evaluated. We also describe in more detail the
parameters that may be changed in the simulation. In Section 6, we present some
example simulation results to demonstrate two-way conversations under different loss
and delay conditions. The results are in audio files that are in Sun audio file format.
Pointers to download the files are located at http://www-net.cs.umass.edu/
~sbmoon/synch.html. Finally, in Section 6, we make some concluding remarks and
indicate some directions in which the present work is being extended.




2. Internet Phone Simulation Model

An overall functional view of our simulation model is provided in Fig. 1. In the figure,
we have Speakers A and B at computers who conduct a two-way voice conversation using
an Internet phone application. The voice signal of each speaker i1s sampled, encoded, and
packetized by the computer. The resulting packet stream is then transmitted over the
access link and the Internet. Sampling, encoding, and packetization is described in more
detail in Section 3. The simulation is driven by the packet voice streams that are
generated by the two speakers (see a-a and b-b in Fig. ). These streams are generated
prior to running the simulation by recording a direct two-way telephone Conversation and
then processing the voice signals off-line. The recording procedure and processing is
described in more detail in Section 3. When the packet voice traffic arrives at its
destination, the received packets are played out according to a certain playout algorithm,
as shown in Fig. 1. During the simulation, we store the playout times of packets at each
side (see b-a and a-b in Fig. 1). We also store the transmission times of packets at each
side (see a-a and b-b in Fig. 1). The voice signals are then reconstructed off-line after
the simulation is finished using the original voice samples and the stored packet
transmission and playout time information.

The access links to the Internet are full-duplex. Each link is modeled by two
finite buffer FIFO queues, one for each direction of transmission. The links could be, for
example, T1 links with a data payload transfer rate of 1.344 Mbits/s. At the access links,
we can also incorporate other background traffic. This is meant to take into account the
presence of other Internet phone traffic and data traffic, such as web browsing, that is
multiplexed on the same access links. For instance, an ISP multiplexes the traffic from
many customers onto one or more access links to the rest of the Internet. Note that, in the
model, this background traffic only passes through the FIFO queues. We do not include
the background traffic in the Internet model itself since the intent of our simulation tool is
to evaluate the performance of an Internet phone conversation for different access link
scenarios and existing or projected Internet traffic conditions. The generation of the
background traffic is described further in Section 5.

In the center of Fig. 1, we have the Internet model. In the present version of this
model, the Internet impairments are represented simply by an end-to-end delay density
function D(r) and a loss probability P. The delay density includes propagation delays.
The delay and loss processes are assumed to be independent. The impairments in the two
directions are also assumed to be independent. The sampling of delays from the given
density function presents a packet ordering problem that we shall revisit in Section 5.

We now explain in general terms how we model the synchronization of talkspurts
in the two-way conversation. When two speakers are involved in a telephone
conversation, there is inherently a great deal of synchronization between the talkspurts of
the conversants. For example, (i) Speaker A asks a question and then Speaker B responds
after a certain amount of time, or (ii) Speaker B talks and Speaker A then interrupts at a
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certain point in time during the talkspurt of Speaker B, and so on. One of the main
features of our simulator is that we explicitly incorporate such synchronization in our
simulation so that the effect of variable delays can be seen in the resulting two-way
interactive voice conversation. This is accomplished using triggers, as illustrated in Fig.
I, where talkspurts from Speaker B arrive at the A side and trigger Speaker A to start
talking (that is, sending packets) at ceitain points in timie;-ane vice versa. Further details
are provided in Section 4.

3. Recording and Packetization of Two-Way Voice Conversations

To record a two-way voice conversation, it is necessary that the two speakers be isolated
acoustically so that the voice signals can be recorded separately without any mixing. This
is done by’ placing the two speakers in separate offices that each contain a Sun
SPARCstation and a conventional telephone. The two Suns are connected by a LAN.
The two-way voice conversation between the speakers is then made using the telephones
that are connected through the local PBX. At each telephone, we attach the Sun
SPARCstation microphone in close proximity to the microphone in the telephone hand-
set. The voice signal at each end can then be recorded separately. The recording should
be done with no silence detection activated so that different silence detection algorithms
can be applied off-line to the voice recordings, as desired.

The recording of the voice signal at each Sun can be carried out easily using
audiotool that is available on SPARCstation 20 with Solaris 2.4. A problem with
simply using audiotool, however, is that we need to synchronize the time at which the
recordings are started on both sides since we will need to establish the timing
relationships between the talkspurts of the two speakers, say Speakers ‘A’ and ‘B’. Such a
synchronization facility is not available in audiotool. To circumvent this problem, we
can instead use nevot [SCH2,SCH3] to make the recordings since the source code is
available and we can modify it readily to produce a timestamp at the beginning of an
audio file when a recording is started. In order to synchronize the clocks on the two Suns,
we use NTP [MIL1]. This protocol provides clock synchronization “to within a few tens
of milliseconds” [MIL2] in the Internet of today. The procedure is then to record the
voice signals on both sides using the modified version of nevot and then delete the
timestamps and a part of one of the audiofiles so that the voice samples of the two
speakers are synchronized. Let 7' denote the timestamp in the audiofile for Speaker x, let
6 denote the voice sampling period, and assume without loss of generality that T, < Ty,
Then the number of samples that should be deleted from the audig file for Speaker A is
[(Ty — T4)/8]. This is an approximate number since NTP provides a coarser granularity of
timing than audio samples, but it is a good enough approximation for the present
purposes since a time shift of several milliseconds in the playout of talkspurts is
imperceptible. Let the resulting synchronized audio files be denoted by a.au and b . au.

In the recording of voice traces using nevot, we can specify either 64 Kbit/s 8-bit
PCM p-law, 64 Kbit/s 8-bit PCM A-law, 8KHz 13Kbit/s GSM, 8KHz 32Kbit/s DVI, or



8KHz 5.6Kbit/s LPC, to name a few encoding schemes. We can also specify 16KHz and
44.1KHz encoding but the use of these schemes depends on the machine. By simply
modifying the nevot software, virtually any other standardized or proprietary encoding
and compression scheme can be incorporated in our simulation tool. Hence, the tool also
enables us to compare the performance of Internet phone applications with different voice
encoding and compression schemes. -In the simulation runs that we have carried out so
far, we have used 64 Kbit/s 8-bit PCM p-law. '

Having obtained the synchronized voice sample files a.au and b. au, the next
step is to perform silence detection on these files. Silence detection is used in packet
voice to reduce the number of packets that need to be sent. To detect sifence periods, we
first divide the sample stream into frames, where each frame consists of a set of
consecutive samples that is to be packetized, as illustrated in Fig. 2. The number of
samples in <a frame depends on the packetization interval A that is selected. This
parameter is a software variable that can be adjusted in our simulation tool. In [JAY], it
is recommended that A be set in the range of 16 to 30ms. In the experiments that we have
carried out so far, we have used A = 20ms. Note that nevot uses A = 20ms. Audio
devices on Sun SPARCstations and SGI workstations generate a block of audio samples
every 20ms if the sampling rate is set at 8KHz. This is why most voice applications use
20ms as the default packetization interval. Nevertheless, it is still adjustable. It can also
be noted that 20ms of 64Kbit/s 8-bit PCM is a relatively long period for voice. It
corresponds to 160 octects of voice data per packet. In contrast, we can note that in ATM
there is at most only 48 octets of voice data in each cell (48 octets is an upper bound
when no AAL is used). By making A larger, we reduce the packet transmission rate and
the overall protocol overhead at the expense of an increase in packetization delay.

To decide which frames correspond to silence periods, we use the adaptive silence
detection algorithm that is used in nevot. This algorithm uses a running threshold,
based on the average sample amplitude, to decide if frames correspond to either talkspurt
or silence periods. Since the silence detection is implemented as a software module in
our simulation tool, we can also incorporate in our simulation tool other silence detection
algorithms, such as the one in the GSM audio codec. The process of identifying silence
and talkspurt frames is also illustrated in Fig. 2.

Having identified the frames that correspond to silence periods, it now remains to
describe how the samples are packetized for transmission on the Internet. In certain
Internet phone implementations such as nevot, we not only transmit frames that
correspond to talkspurt periods but we may also transmit certain frames that correspond
to silence periods. This is done to have a small period of background noise at the
beginning and end of talkspurts so that the talkspurts sound more natural at the receiving
end. The basic idea is to packetize and transmit a certain number of frames that precede
and follow a talkspurt. More precisely, the procedure is as follows. Let H denote the
number of frames that are to be transmitted after a talkspurt and let G denote the number
of frames that are to be transmitted before a talkspurt. The parameter H is called the
hang-over. At the end of every talkspurt, H more packets are transmitted even though




they are detected as silence. When a new talkspurt begins, G packets are sent out before
the first packet of the new talkspurt is transmitted. To implement this algorithm, the
system must cache G frames during a silence period. The procedure is illustrated in Fig.
2 for H=2 and G=2. Note that all silence periods up to H+G frames in length are
effectively eliminated. By changing H and G, we can take into account different
implementation details in our simulator. nevot, forexample, uses the default values
H=2 and G=3, but these parameters can be modified.

Each frame that is to be packetized for transmission is sent in an individual
packet. To this data, we add a 20 octet IP header, an 8 octet UDP headg},’ and a 12 octet
RTP header [SCH4], as illustrated in Fig. 3. This is the packetization procedure that is
followed in nevot. With A = 20ms and 64Kbps 8-bit PCM, the protocol overhead is
20%. By modifying the packetization process, we can also consider other protocol stack
implementafions in our simulation. Note that the RTP header contains a timestamp and a
sequence number that is used in the playout algorithms.

-

4. Synchronization of Talkspurts in Two-Way Conversation

We now describe in more detail how the talkspurts of the two speakers are synchronized
in the simulation. Consider the timing diagrams in Fig. 4.. These illustrate the timing
between Speaker B talkspurts and how the talkspurts of Speaker B are related to those of
Speaker A in the original two-way conversation. Each talkspurt actually consists of a
packet stream at rate' A" packets/s. In Case 1 of Fig. 4, Speaker A finishes talking and B
then starts talking after ¢ seconds. In Case 2, Speaker A starts talking and Speaker B
interrupts  seconds later when Speaker B ‘hears’ packet x from Speaker A. In Case 3, B
talks, falls silent, and then starts talking again after ¢ seconds. In Case 4, both speakers
happen to start talking at the same time, ¢ seconds after Speaker B stopped talking. If we
reverse A and B in Fig. 4, then we have timing diagrams that illustrate the timing between
Speaker A talkspurts and how the talkspurts of Speaker A are related to those of Speaker
B in the original conversation.

In the simulation, we use the above defined timing relationships to reproduce the
synchronization that exists between talkspurts in the original voice conversation. This is
done as follows. We first consider how the synchronization is performed at the side of
Speaker B. There are several cases that need to be defined.

() Case 1 in Fig. 4: A talkspurt from Speaker A finishes arriving af the side of Speaker B
at time f, and Speaker B is silent. The next talkspurt from Speaker B is then triggered
to begin at time ¢ + 1,,. .

(2) Case 2 in Fig. 4: A talkspuri from Speaker A is in the process of arriving at the B side
and Speaker B is silent. The arrival of packet x from Speaker A then triggers the
transmission of the (interruption) talkspurt from Speaker B.
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(3) Case 3 in Fig. 4: A talkspurt from Speaker B finishes when Speaker A is silent.
Speaker B then falls silent at time f#,. The next talkspurt from Speaker B is then
scheduled to be sent out starting at time ¢, + 1.

(4) Case 4 in Fig. 4: Both speakers are silent and then both speakers send out talkspurts
at the same time. The talkspurt from Speaker B is then scheduled to be sent out at
time tz + t. This is also done in the case where ¢, > 1,,.

The synchronization performed at the side of Speaker A is also as described above except
that we simply reverse A and B. F

-

5. Logical Block Diagram and Model Parameters

The complete simulation model depicted in Fig. 1 has been programmed in C. We make
use of C subroutines from SIMUL [SCHI1] that simplify the construction of the discrete-
event simulation program. Subroutines from SIMUL are also used to gather performance
statistics such as the delay and loss at the finite buffer FIFO queues. A logical block
diagram of the simulation tool is illustrated in Fig. 5. This shows the entire sequence of
processing required from collecting voice samples to reproducing the conversation that is
heard on either the A or B side.

In Fig. 5, we first use the nevot program to record voice samples in a file. As
mentioned previously, the nevot software can be modified to consider different
encoding schemes. The output of nevot is a .tau file. This file contains the voice
samples as well as the timestamp that indicates when the recording was started. The
filter program then takes as input the a.tau and b.tau files, removes the
timestamps, and deletes a portion of one of the files, as described in Section 3, to
synchronize the two voice traces. The synchronized voice samples are contained in the
.au files. Following this, the ts program is run to detect the talkspurt frames in the
voice sample files. The ts program can be modified to incorporate virtually any silence
detection algorithm. The output of ts is a .nevot file. The .nevot file specifies
which frames correspond to talkspurt periods. Following this, the a.nevot and
b.nevot files are processed by trig to determine all the triggering and scheduling
information that is required to synchronize the talkspurts at both sides in the simulation.
The output of trigisa.trigandb.trig.

The central part of the tool is the discrete-event simulation program 2way that
simulates the queueing system depicted in Fig. 1. This program takes a.trig and
b.trig as inputs and outputs the .result files. The file a-a.result is a record
of the departure times of Speaker A packets from the A side. The file a-b.result is a
record of the playout times of Speaker B packets at the A side (after the playout
algorithm). The definitions of b-b.result and b-a.result are apparent. The
2way program contains many parameters of the queueing system model that may be
modified by the user. These will be described further below.
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It now remains to construct audio files corresponding to a-a.result, a-
b.result, b-b.result, and b-a.result. The .result file only contains
packet playout times. Hence, it is necessary to build audio files by effectively filling the
packets with voice samples. The program repro takes a .result file as input and
builds an audio file using the voice samples that are contained in a . au file. The pair of
audio files corresponding to each side is then mixed using the program mix. The audio
file a.b.au is then a reproduction of the two-way conversation as seen at the A side.
The file b.a.au is the two-way conversation as seen at the A side. These files can be
listened to using audiotool. Note that if we listen to a.b. au, then Speaker A sounds
unperturbed while Speaker B seems to be the only one suffering from loss and delay.
This is simply due to the fact that we are listening in at the A side where Speaker A is
physically located. If we listen to b.a.au, then Speaker B sounds unperturbed while
Speaker A seems to be the only one suffering from loss and delay.

The parameters of the queueing system model in 2way that may be modified by
the user include the access link speeds, the buffer sizes of the FIFO queues, the
specification of the background traffic at each access link, the Internet loss probabilities
in both directions, and the delay density function in both directions. The background
traffic consists of other Internet phone traffic and data traffic. The data traffic arrivals are
generated by a subroutine that is user-definable. This allows us to consider virtually any
arrival process for the data traffic. The packet length process for the data traffic is also
user definable in a subroutine.

The background Internet phone traffic is generated by a subroutine in which we
can specify an arbitrary number of Internet phone sources. The packet traffic from each
phone source is synthesized by generating talkspurts and silence periods using a well-
known and widely adopted two-state Markov model for voice (see, for example,
[HEF,SRI]). The talkspurts are then packetized, as in Section 3. Hang-over packets and
cached packets are also added in, as in Section 3. In the Markov model, the talkspurt and
silence periods are independent and exponentially distributed. The mean talkspurt and
silence lengths are 352ms and 650ms, respectively [SRI]. The subroutine generates the
packet process for each source, superimposes the resulting packet streams, and then
presents the aggregate phone traffic to the FIFO queue. We use separate and independent
background Internet phone traffic generators for each FIFO queue.

The Internet loss 1s generated simply using an independent Bernoulli trial with
probability P. The 2way program can, however, be modified easily to accommodate
more complex loss processes such as burst losses. The end-to-énd delay is generated
from a delay density function D(f) that is user definable. When a packet is presented to
the Internet model, the delay is drawn from the specified density function. Although this
seems simple enough, there is a reordering problem. Suppose that packet i arrives at the
Internet model at time #; and the sampled delay is d; and then packet i+1 arrives at time
ti+; and the sampled delay is d,,,, where t;,y > t;. If t;/+d; > t;+d;y, then packet i+1 arrives
at the destination end of the Internet before packet i. In other words, the sequencing of




the packets is lost. To avoid this problem, we keep resampling djy until ti+d; > i, +diy
is satisfied. The unused samples are stored for later use. When we determine the delay
for subsequent packets, we first try to use the largest stored sample that does not lead to
missequencing before generating any new delay samples from D(r). To find the largest
sample that can be used among the stored samples, we use a binary search. Since this
delay generation procedure uses samples that are genegatgd. directly from D(r), the
marginal density function for the Internet delay is generated as specified.

+

6. Example Simulation Results

We now present some simulation results to demonstrate some two-way voice
conversations under different delay and loss conditions. The results are in audio files that
are in Sun audio file format. Pointers to download the files are located at
http://www-net.cs.umass.edu/~sbmoon/synch.html. These files can be
played out using audiotool. In all the examples, the access links are T1 links. We use
the parameters A=20ms, H=2, and G=3. We consider six examples. In the first two
examples, there is background phone traffic at the access links. In the remaining
examples, we eliminate the background traffic completely and set the buffers at a large
size so as to be able to concentrate on the effects of the Internet model impairments. In
the examples, we use four different delay distributions Dy, D», D3 and Dy. In Dy, the
delays are in the range (0.1, 1.0) and the mean is 0.46 seconds. In D,, the range is (0.5,
1.5) and the mean is 0.96 seconds. In Ds, the range is (1.0, 1.9) and the mean is 1.47
seconds. In Dy, there is no delay.

In the first example, the number of buffers at each FIFO queue is set at 30 packets.
There are 25 background phone sources at each FIFO queue. The file

adrian-paul.au
is an original conversation between Adrian and Paul with no impairments. The file

adrian-paul.delayl.0.exl.au

is the resulting conversation between Adrian and Paul, as heard at Adrian’s side, with
delay distribution D and P=0%.

In the second example, the number of buffers at each FIFO queue is set at 30
packets and there are 30 background phone sources at each FIFO queue. The file

adrian-paul.delay2.0.ex2.au

is the conversation between Adrian and Paul, as heard at Adrian’s side, with D, and
P=0%. The respective conversations at Paul’s side are in the files

paul-adrian.delayl.0.exl.au, paul—adfian.delayZ .0.ex2.au.




Listening to these audio files, we can hear that the quality of the conversation is quite
good in the case of delayl.0.ex1. In the case of delay2.0.ex2, the quality is
relatively bad.

In the third example, the number of buffers at each gueue is set at 100 and there is
no background traffic. We consider a conversation between Adrian and Sue with no
delay and P=33%. The conversation at Sue’s side is in the file

sue-adrian.delay0.33.ex3.au.
The fourth example is the saimc_as the third except that P=50%. The conversation at
Adrian’s side is in the file

adrian-sue.delay0.50.ex4.au.

Listening to these last two files, we can hear that, even with 33% loss, the speaker is still
quite intelligible. "At 50% loss, however, the speaker is very difficult to understand.

In the fifth example, the number of buffers at each queue is set at 100 and there is
no background traffic. The conversation is between Adrian and Paul with D; and
P=10%. The conversation at Paul’s side is in the file

paul-adrian.delayl.10.ex5.au.

The last example is the same as the fifth except that we use D3 and P=25%. The
conversation at Paul’s side is in the file

paul-adrian.delay3.25.ex5.au.

Listening to these files, we can hear that the case delayl.10.ex5 is acceptable while
the case delay3 .25 . ex5 is very difficult to understand.

7. Concluding Remarks

A simulation tool has been developed to evaluate off-line the performance of Internet
phone applications under various scenarios and parameter settings. The simulation
includes Internet access links, background Internet phone and data traffic, and Internet
loss and delay modeling. The main original feature of the simulator is that it takes into
account the synchronization between talkspurts in two-way conversation. Example
results of two-way conversations under different delay and loss conditions may be
downloaded from a web page.



There are several directions in which the present work is being extended. Firstly,
we are developing a graphical user interface (GUI) for the tool. This will make the tool
much easier to use, especially when one wishes to explore a large parameter space.
Secondly, we are planning to use the tool to study the delay and loss limits that can be
tolerated in Internet phone applications. Finally, we plan to develop a library of different
Internet loss models, Internet delay models, and background .data traffic models that can
be used in the simulator. Much research is currently being pursued on developing loss,
delay, and traffic models for the Internet. As research results become available, we plan
to incorporate them in our tool. We also plan to place more example audio files in the
web page as we accumulate further results. o

-
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