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Abstract

Point-to-point delay is an important network performance measure as it captures service degradations caused by var-
ious events. We study how to measure and report delay in a concise and meaningful way for an ISP, and how to monitor it
efficiently. We analyze various measurement intervals and potential metric definitions. We find that reporting high quan-
tiles (between 0.95 and 0.99) every 10–30 min as the most effective way to summarize the delay in an ISP. We then propose
an active probing scheme to estimate a high quantile with bounded error. We show that only a small number of probes are
sufficient to provide an accurate estimate. We validate the proposed delay monitoring technique on real data collected on
the Sprint IP backbone network. To make our work complete, we lastly compare the overhead of our active probing tech-
nique with a passive sampling scheme and show that for delay measurement, active probing is more practical.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Point-to-point delay is a powerful ‘‘network
health’’ indicator in a backbone network. It cap-
tures service degradation due to congestion, link
failure, and routing anomalies. Obtaining meaning-
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ful and accurate delay information is necessary for
both ISPs and their customers. Thus delay has been
used as a key parameter in Service Level Agree-
ments (SLAs) between an ISP and its customers
[12,33]. In this paper, we systematically study how
to measure and report delay in a concise and mean-
ingful way for an ISP, and how to monitor it
efficiently.

Operational experience suggests that the delay
metric should report the delay experienced by most
.
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packets in the network, capture anomalous changes,
and not be sensitive to statistical outliers such as
packets with options and transient routing loops
[3,11]. The common practice in operational back-
bone networks is to use ping-like tools. ping mea-
sures network round trip times (RTTs) by sending
ICMP requests to a target machine over a short per-
iod of time. However, ping was not designed as a
delay measurement tool, but a reachability tool.
Its reported delay includes uncertainties due to path
asymmetry and ICMP packet generation times at
routers. Furthermore, it is not clear how to set the
parameters of measurement tools (e.g., the test
packet interval and frequency) in order to get a cer-
tain accuracy.

Inaccurate measurement defeats the purpose of
performance monitoring. In addition, injecting a
significant number of test packets for measurement
may affect the performance of regular traffic, as well
as tax the measurement systems with unnecessary
processing burdens. More fundamentally, defining
a metric that can give a meaningful and accurate
summary of point-to-point delay performance has
not been considered carefully.

We raise the following practical concerns in mon-
itoring delays in a backbone network. How often
should delay statistics be measured? What metric(s)
capture the network delay performance in a mean-
ingful manner? How do we implement these metrics
with limited impact on network performance? In
essence, we want to design a practical delay moni-
toring tool that is amenable to implementation
and deployment in high-speed routers in a large net-
work, and that reports useful information.

The major contributions of this paper are three-
fold: (i) By analyzing the delay measurement data
from an operational network (Sprint US backbone
network), we identify high-quantiles [0.95–0.99] as
the most meaningful delay metrics that best reflect
the delay experienced by most of packets in an
operational network, and suggest 10–30 min time
scale as an appropriate interval for estimating the
high-quantile delay metrics. The high-quantile delay
metrics estimated over such a time interval provide
a best representative picture of the network delay
performance that captures the major changes and
trends, while they are less sensitive to transient
events, and outliers. (ii) We propose and develop
an active probing method for estimating high-quan-
tile delay metrics. The novel feature of our pro-
posed method is that it uses the minimum number
of samples needed to bound the error of quantile
estimation within a prescribed accuracy, thereby
reducing the measurement overheads of active
probing. (iii) We compare the network wide over-
head of active probing and passive sampling for
delays. To the best of our knowledge, this is the first
effort to propose a complete methodology to mea-
sure delay in operational networks and validate
the performance of the active monitoring scheme
on operational data.

The remainder of this paper is organized as fol-
lows. In Section 2, we provide the background
and data used in our study. In Section 3, we inves-
tigate the characteristics of point-to-point delay dis-
tributions obtained from the packet traces and
discuss metrics used in monitoring delay in a tier-1
network. In Section 4, we analyze how sampling
errors can be bounded within pre-specified accuracy
parameters in high quantile estimation. The pro-
posed delay measurement scheme is presented and
its performance is evaluated using packet traces in
Section 5. In Section 7, we summarize related
works. We conclude the paper in Section 8.

2. Data and background

We describe our data set and provide some back-
ground about point-to-point delay observed from
this data.

2.1. Data

We have collected packet traces from Sprint’s
tier-1 backbone using the methodology described
in [9]. The monitoring system passively taps the
fibers to capture the first 44 bytes of all IP packets.
Each packet header is timestamped. The packet
traces are collected, from multiple measurement
points simultaneously, and span over a long period

of time (e.g., hours). All the monitoring systems
are synchronized by GPS (Global Positioning Sys-
tem). The resolution of the clock is sub-microsec-
ond, allowing us to disambiguate packet arrival
times on OC-48 links. The timestamp maximum
error is 5 lm.

To obtain packet delays between two points, we
first identify packets that traverse two points of
measurements. We call this operation packet match-

ing. We use hashing to efficiently match two packet
traces. We use 30 bytes out of the first 44 bytes in
the hash function. The other 14 bytes are IP header
fields that would not help disambiguate similar
packets (e.g., version, TTL, and ToS). We occasion-
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ally find duplicate packets. Since these packets are
totally identical, they are a source of error in the
matching process. Given that we observe less than
0.05% of duplicate packets in all traces, we remove
these duplicate packets from our traces.

We have matched more than 100 packets traces,
and kept only those matched trace that exhibited
many (more than half a million) successful matched
packets. The matched traces are from paths with
various capacities and loads over multihop nodes.
For a succinct presentation, we have chosen to illus-
trate our observations of with 3 matched traces out
of the 21 we studied. The traces shown are represen-
tative and the other traces show similar results. The
statistics of these three matched trace are shown in
Table 1. In all the matched trace data sets, the
source and destination links are located on the West
Coast and the East Coast of the United States
respectively, rendering trans-continental delays over
multiple hops.

2.2. Background

We now briefly discuss the characteristics of
actual packet delays observed on the Sprint US IP
backbone. More detailed observations can be found
in [25,4].

The empirical cumulative probability distribu-
tions of point-to-point delays using a bin size of
5 ls is shown in Fig. 1. For ease of observation,
Table 1
Summary of matched traces (delay in ms)

Set From To Duration Packets

1 OC-48 OC-12 16 h 24 m 1,349,187
2 OC-12 OC-12 5 h 27 m 882,768
3 OC-12 OC-48 5 h 21 m 3,649,049
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Fig. 1. Empirical cumulative probability density function of delay over 3
we divide the duration of traces into 30 min inter-
vals and then plot distributions for the first and last
three intervals of each trace duration.

Delay distributions exhibit different shapes, as
well as change over time, especially in Data Set #2
and #3. We explain these differences as follows. In
theory, the packet delay consists of three compo-
nents: propagation delay, transmission delay and
queueing delay. Propagation delay is determined
by the physical characteristics of the path. Trans-
mission delay is a function of the link capacities
along the path as well as the packet size. Queueing
delay depends on the traffic load along the path,
and thus varies over time. In practice, other factors
add variations to the delay packets experience in an
operational network. First, Internet packet sizes are
known to exhibit three modes, where the peaks are
around 40, 576 (or 570), and 1500 bytes [14]. When
there is little queueing on the path, the packet size
may impact the shape of a distribution even in the
multi-hop delays, as shown in Fig. 1a. In addition,
routing can introduce delay variability. Route may
change over time because of link failure. Fig. 1b
shows that the path between the two measurement
points changed within the last 30 min. Furthermore,
packets can take multiple routes between two points
because of load balancing, as in Fig. 1c. Equal-cost
multi-path (ECMP) routing [34] is commonly
employed in operational networks. Routers (e.g.,
Cisco routers in our study) randomly split traffic
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Fig. 2. Presence of ECMP in Data Set 3.
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using a hash function that takes the source and the
destination IP addresses, and the router ID (for traf-
fic splitting decision to be independent from
upstream routers) as input to determine the outgo-
ing link for each packet. Therefore packets with
the same source and destination IP addresses always
follow the same path. We define a (two-tuple) flow to
be a set of packets with the same source and desti-
nation IP addresses, and group packets into flows.
We then compute the minimum packet delay for
each flow. As suggested in [4], if the two flows differ
significantly in their minimum delays, they are likely
to follow two different paths. In Fig. 2, we plot the
minimum delay of each flow by the arrival time of
the first packet in the flow for Data Set 3. The plot
demonstrates the presence of three different paths,
each corresponding to one step in the cumulative
delay distribution of Fig. 1c. Last, extreme packet
delays may occur even under a perfectly engineered
network, due to routing loops [11] or router archi-
tecture [3] related issues. From the perspective of a
practical delay monitoring, we need to take all these
factors into account to provide an accurate and
meaningful picture of actual network delay.
1 We do not know exactly what caused the delays. We focus our
work on measuring and estimating delays. and investigating
reasons of the delay is out of the scope in our work.
3. Metrics definition for practical delay monitoring

The objective of our study is to design a practical
delay monitoring tool to provide a network opera-
tor with a meaningful and representative picture of
delay performance of an operational network. Such
a meaningful and representative picture should tell
the network operator major and persistent changes
in delay performance (e.g., due to persistent increase
in traffic loads) not transient fluctuations due to
minor events (e.g., a transient network congestion).
Hence in designing a practical delay monitoring
tool, we need to first answer two inter-related ques-
tions: (i) what metrics should we select so as to best
capture and summarize the delay performance of a
network, namely, by a majority of packets; and
(ii) over what time interval should such metrics be
estimated and reported? We refer to this time inter-
val as the (metrics) estimation interval. Such ques-
tions have been studied extensively in statistics
and performance evaluation (see [17], for a general
discussion of metrics in performance evaluation).
From the standpoint of delay monitoring in an
operational network, we face some unique difficul-
ties and challenges. Thus our contribution in this
respect lies in putting forth a practical guideline
through detailed analysis of delay measurements
obtained from Sprint’s operational backbone net-
work: we suggest high quantiles [0.95, 0.99] esti-

mated over a 10–30 min time interval as meaningful
metrics for ISP practical delay monitoring. In the
following we present our analysis and reasoning
using the three data sets discussed in the previous
section as examples.

To analyze what metrics provide a meaningful
and representative measure of network delay perfor-
mance, we consider several standard metrics, i.e.,
minimum, average, maximum, median (50% percen-
tile, or 0.5th quantile) and high quantiles (e.g.,
0.95th quantile), estimated over various time inter-
vals (e.g., 30 s, 1 min, 10 min, 30 min, 1 h), using
the delay measurement data sets collected from the
Sprint operational backbone networks. Results are
plotted in Fig. 3. Note that here we do not plot
the maximum delay metrics as maximum delays
are frequently so large that they obscure the plots
for the other metrics. Some statistics of the maxi-
mum delays are given in Table 1, where we see that
maximum delays can be several multiples of the
0.99th quantiles.

From the figures, we see that delay metrics esti-
mated over small time intervals (e.g., 1 min) tend
to fluctuate frequently, and they do not reflect sig-
nificant and persistent changes in performance or
trends (for example, Figs. 3a and b at time 14:40
and Fig. 3c at time 16:30).1

On the other hand, the increase in delay around
18:30 and onwards in both Data Set #2 and Data
Set #3, represents a more significant change in the
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Fig. 3. Delay metrics over different estimation intervals: (a) Data Set #1; (b) Data Set #2; (c) Data Set #3.
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delay trend, and should be brought to the attention
of network operators. Note also that in a few occa-
sions the average delays particularly estimated over
a small time interval are even much larger than the
0.99th quantiles (see, the top two plots in Fig. 3a
around 18:00 and 21:00) – this is due to the extreme
values of the maximum delays that drastically
impact the average.

As a general rule of thumb, the time interval used
to estimate delay metrics should be large enough not
to report transient fluctuations, but not too large in
order to capture in a timely fashion the major
changes and persistent trends in delay performance.
In this regard, our analysis of the data sets suggests
that 10–30 min time interval appear to be an appro-
priate delay estimation interval. As an aside, we
remark that our choice of 10–30 min time interval
is also consistent with the studies of others using dif-
ferent measurement data. For example, the active
measurement study in [36] using NIMI measure-
ment infrastructure [28] has observed that in general
packet delay on the Internet appears to be steady on
time scales of 10–30 min.

In choosing delay metrics, similar properties are
desired. A meaningful metric to ISPs should charac-
terize the delay experienced by most of packets,
thereby providing a good measure of the typical net-
work performance experienced by network users.
Furthermore, such a delay metric should not be
too sensitive to outliers. We summarize the pros
and cons of various delay metrics as below:

• Maximum delay suffers greatly from outliers.
Some packets might experience extreme delays
even under well-managed and well-provisioned
networks [11,13,20] due to IP packets with
options, malformed packets, router anomalies
and transient routing loop during a convergence
time. The rate of outliers is such that there would
be such a packet in almost every time interval.
However, packets that experience the maximum
delay are not representative of the network
performance.

• Average or median delay have the main disad-
vantage of not capturing delay variations due
to route changes (Fig. 1b) or load-balancing
(Fig. 1c) that happen frequently in operational
networks. Moreover, average is sensitive to outli-
ers especially when a small number of test pack-
ets are used.

• Minimum delay is another commonly used met-
rics. We can see from Fig. 3 that the minimum
delay is very stable at any time granularity. A
change in minimum delay reports a change in
the shortest path.

• High quantiles [0.95, 0.99] ignore the tail end of
the distribution and provides a practical upper
bound of delay experienced by most of the pack-
ets. When estimated over the appropriate time
interval, it is not sensitive to a small number of
outliers. However, in the presence of multiple
paths between the measurement points, high
quantiles reflects only the delay performance of
the longest path.

Weighing in the pros and cons of these metrics,
we conclude that high percentile is the most mean-
ingful delay metric. However, high quantile does
not detect a change in the shortest path. Together
with minimum delay, it gives an ISP the range of
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delays experienced by most of the packets between
the two endpoints. As minimum delay is easy to
capture [18] using active test packets, in this paper,
we focus on the accurate estimation of high
quantiles.

4. Quantile estimation analysis

In this section we develop an efficient and novel
method for estimating high-quantile delay metrics:
it estimates the high-quantile delay metrics within
a prescribed error bound using a number of
required test packets. In other words, it attempts
to minimize the overheads of active probing. In
the following, we first formulate the quantile estima-
tion problem and derive the relationship between
the number of samples and the estimation accuracy.
Then, we discuss the parameters involved to com-
pute the required number of samples.

We derive the required number of test packets to
obtain a pre-specified accuracy in the estimation
using Poisson modulated probing. Active test pack-
ets perform like passive samples under the following
two assumptions. First, the amount of test packets
should be negligible compared to the total traffic,
so that it does not perturb the performance it mea-
sures. Second, the performance of test packets
should well represent the performance of regular
traffic. Both assumptions are held, which rational-
izes our use of active probing. As we will see later,
the required number of test packets is relatively
small, thus it is negligible on today’s high speed
backbone networks. Also, we encapsulate the test
packets in regular UDP packets so that they do
not receive special treatments in a router, unlike
packets with IP option or ICMP packets that go
to the slow-path of a router.

Now, we formally define a quantile of a delay dis-
tribution. Let X be a random variable of delay. We
would like to estimate a delay value qp such that the
99% (i.e., p = 0.99) of time, X takes on a value smal-
ler than qp. The value qp is called the pth quantile of
delay and is the value of interest to be estimated. It
is formally stated as2

qp ¼ inffq : F ðqÞP pg; ð1Þ

where F(Æ) denotes a cumulative probability density
function of delay X.
2 Note that theoretically, the original delay distribution can be
considered as a continuous function, and the measured delay
distribution is a realization of it.
Suppose we take n random samples, X1,X2, . . . ,
Xn. We define bF , an empirical cumulative distribu-
tion function of delay, from n samples (i = 1, . . . , n) as

bF ðqpÞ ¼
1

n

Xn

i¼1

IX i6qp
; ð2Þ

where the indicator function IX6qp
is defined as

IX i6qp
¼

1 if X i 6 qp;

0 otherwise:

�
ð3Þ

Then, the pth sample quantile is determined by

q̂p ¼ bF �1ðpÞ: ð4Þ
Since bF ðxÞ is discrete, q̂p is defined using order
statistics. Let X(i) be the ith order statistic of the
samples, so that X(1) 6 X(2) 6 � � � 6 X(n). The natu-
ral estimator for qp is the pth sample quantile ðq̂pÞ.
Then, q̂p is computed by

q̂p ¼ X ðdnpeÞ: ð5Þ

Our objective is to bound the error of the pth
quantile estimate, q̂p. More specifically, we want
the absolute error in the estimation jq̂p � qpj to be
bounded by e with high probability of 1 � g

Prfjq̂p � qpj > eg 6 g: ð6Þ

Now we discuss how many samples are required to
guarantee the pre-specified accuracy using random
sampling. Since they are obtained by random sam-
pling, X1,X2, . . . ,Xn are i.i.d. (independent and iden-
tically distributed) samples of the random variable
X. It is known that quantile estimates from random
samples asymptotically follow a normal distribution
as the sample size increases (see Appendix A for
details)

q̂p!
D

N qp;
r2

n

� �
where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
f ðqpÞ

: ð7Þ

f(qp) is the probability density at the pth quantile of
the actual distribution. Eq. (7) is called Bahadur
expression [31]. The estimator is known to have
the following properties: (i) unbiasedness: the expec-
tation of the estimate is equal to the true value (i.e.,
Eðq̂pÞ ¼ qp). (ii) consistency: As the number of test
packets n increases, the estimate converges to the
true value (i.e., q̂p ! qp as n!1). Note that the
above analysis is based on random sampling. Thus
the analysis of accuracy such as confidence interval
(e) and confidence level (1 � g) is applicable regard-

less of the underlying delay distribution from the
Central Limit Theorem.
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We derive from Eqs. (6) and (7) the required
number of samples to bound the estimation error
within the pre-specified accuracy as

n� ¼ zp �
pð1� pÞ
f 2ðqpÞ

& ’
; ð8Þ

where zp is a constant defined by the error bound

parameters i:e:; zp ¼ U�1ð1�g=2Þ
e

� �2
� �

, and U(Æ) is

the cumulative probability function of standard
normal distribution.

Eq. (8) concisely captures the relationship of the
number of samples on the quantile of interest (p),
the accuracy parameters (e,g) and a parameter of
original delay distribution (f(qp)).

From Eqs. (7) and (8), we show that the variance
of the estimate is bounded as

Varðq̂pÞ ¼
pð1� pÞ

f 2ðqpÞ � n�
6

1

zp
ð9Þ

since n� P zp � pð1�pÞ
f 2ðqpÞ

� �
.

The derivation here is for cases with low sample
fractions from a large population. We have ana-
lyzed the results as if we sampled with replacement
though the actual sampling is done without replace-
ment, as it makes the formula simple and enables us
to compute the required number of samples con-
cisely. When the sampling fraction is non-negligible,
an extra factor should be considered in computing
the number of samples. The impact is that the actual
variance from the sampling without replacement
would be smaller than the one from with replace-
ment. Thus, the actual estimation accuracy achieved
is higher with the given number of samples. Practi-
cally the analysis of sampling with replacement is
used as long as the population is at least 10 times
as big as the sample [22].
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Unfortunately, f(qp) is not known in practice.
Therefore, it can only be approximated. The
required number of samples is inversely propor-
tional to f2(qp).

A reasonable lower-bound of the value should be
used in the computation of n*, so that the accuracy
of the quantile can be guaranteed. We investigate an
empirical values of f(qp) using our data. The
empirical p.d.f. of a delay distribution should be
evaluated in terms of a time granularity of measure-
ments. As the bin size or the time granularity of dis-
tribution gets larger, the relative frequency of delay
becomes larger. In order to approximate f2(qp), we
observe the tail probabilities of delay distributions
from the traces. However, for 10–30 min durations
of various matched traces from differing monitoring
locations and link speeds, we find that the probabil-
ities at high quantiles, f(qp), (0.95 6 p 6 0.99) vary
little and can be reasonably lower bounded. Fig. 5
shows the probability of high quantiles of the
matched traces at time granularity of 5 ls. We find
the values between 0.0005 and 0.001 are sufficient
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as the lower-bound of the tail probability for quan-
tiles of 0.95 6 p 6 0.99. Meanwhile, if p approaches
to 1 (e.g., p = 0.99999), the quantile is close to the
maximum and f(qp) becomes too small requiring
large number of samples. Note that when the tail
probability becomes heavier, f(qp) becomes larger
making the estimate more accurate. On the other
hand, when the tail probability becomes smaller
than the approximated, the accuracy of an estimate
(the variance of estimation) would not degrade
much, since the variance of the original packet delay
would be small. Therefore, with given accuracy
parameters and the lower bound of f(qp), the num-
ber of test packets is decided as a constant.

Fig. 6 shows the number of required samples for
different quantiles and different accuracy parame-
ters.3 It illustrates the degree of accuracy achieved
with the number of samples, and thus provides a
guideline on how to choose the probing frequency
for a given quantile p to be estimated. A sample size
between a few hundred and a few thousand test
packets (420–3200) is enough for (e = 10 ls, 1 �
g 2 [0.95, 0.99]) range of accuracy and (q.95 � q.99)
high quantile. With high speed links (1 Gbps and
above), we consider the amount of injected traffic
for probing purpose negligible compared to the
total traffic. For example, 1800 packets over a
10 min period corresponds to about 3 packet per
second on average. Suppose 64 byte packets are
used for the test packets. This would constitute only
1.5 Kbps which is 0.0002% of the total traffic for a
30% loaded OC-48 link.

Before leaving this section we comment on esti-
mating an entire distribution, even though our focus
in this paper is on a point estimation of a most rep-
resentative delay metric. Note that Eq. (8) applies to
3 Note that f(qp) for each high quantile is fixed equally as 0.001
from empirical observation shown in Fig. 5.
any quantile in a distribution. Thus, the estimated
quantiles enjoy the pre-scribed accuracy, if the min-
imum required number of samples for the quantile,
n* is smaller than the used number of samples. In
particular, as the quantile goes closer to median
(q = 0.5) and the probability density at the quantile
f(qp) gets larger, the required number of samples
becomes smaller, resulting that the accuracy of an
estimation for the quantile becomes higher.

5. Delay monitoring methodology

In this section, we describe our probing scheme
and validate its accuracy using delay measurement
data collected from the Sprint operational backbone
network.

5.1. Active probing methodology

The design goal of our active probing scheme is
to estimate high quantile effectively and efficiently
over a fixed estimation interval. In Section 4, we
have shown that at least n* number of independent
random samples are needed in the estimation inter-
val in order to accurately estimate high quantiles.

We proceed as follows. To generate n* number of
test packets within an estimation interval I, we
divide the interval into n* subintervals of length T

(=I/n*). With the help of two timers – a periodic
(T) timer and a random (t 2 [0, T]) one, a random
test packet is generated for each subinterval T in a
time-triggered manner (i.e., whenever a random
timer t expires, a test packet is generated). At the
end of an estimation interval (I), the delay quantile
of the test packets is computed and reported. Fig. 7
illustrates graphically how to generate the pseudo-
random test packets. With this scheme, we ensure
that n* number of test packets are generated inde-
pendently in every estimation interval without gen-
erating a burst at any moment.

We now verify if our time-triggered pseudo-
random probing performs close to random sam-
pling in estimating high delay quantile. If the
inter-arrival times of packets with long delays
Fig. 7. Scheduling n* pseudo-random samples.
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(e.g., 0.95th quantile or larger) are temporarily cor-
related, the pseudo-random probing would not
enable us to estimate high percentile delay well.
However, we find that the correlation coefficient is
close to 0 (for other intervals and traces with the
estimation interval of 10–30 min). If the arrival
times of packets with long delays (e.g., .95th quan-
tile or larger) are temporally correlated, the
pseudo-random probing may not capture the delay
behavior well. Fig. 8 shows the scatter plot of
inter-arrival times of packets with long delays (for
the last 30 min of Data Set #3). It illustrates that
inter-arrival times of packets with long delays are
essentially independent.

Test packets scheduling aside, there are several
practical issues in implementing a probing scheme
such as protocol type and packet size. For the type
of test packets, we choose to use UDP packets
instead of ICMP packets that are used in ping-like
active probing softwares. ICMP packets are known
to be handled with a lower priority at a router pro-
cessor. Thus their delay may not be representative
of actual packet delay. Test packet size might affect
the measure of the delay. We analyzed all matched
traces and found that packet size has little impact
on high quantile. This is best illustrated in Fig. 4
where we classify packets into three clusters based
on the packet sizes, and computed their .99th quan-
tile, compared with that of all packets. As observed,
high quantiles from individual packet size classes
are similar, and one particular packet size class does
not reflect high quantile from all packets better con-
sistently. It provides the evidence that high quantile
delays are not likely to come from packets of a large
size, thus the size of test packet should not impact
the accuracy of high quantile estimation.

We also have performed a thorough analysis of
packet properties in order to detect a correlation
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Fig. 8. Correlation of inter-packet time of long delayed packets
(correlation coefficient = 1.8e�6).
between packet fields and delay, if any. However,
we did not find any correlation between packet
types and the delay distribution. This result con-
firms that the tail of distribution comes from queue-
ing delay rather than due to a special packet
treatment at routers.

As ECMP is commonly employed in ISPs, we
need to make sure that our test packets take all
available paths when they exist. Load balancing is
done on a flow basis, in order to preserve packet
sequence in a flow. Therefore, we propose to vary
the source address of test packets within a reason-
able range (e.g., a router has a set of legitimate IP
addresses for its interfaces) to increase the chances
of our test packets to take all available paths. The
original source address can be recorded in the test
payload to allow the destination to identify the
source of the test packets.

We have described the proposed active probing
methodology in terms of probing schedule, the
number of test packets for a certain accuracy, the
test packet type and the packet size. With regard
to a control protocol to initiate and to maintain
monitoring sessions between endpoints, the existing
protocols such as Cisco SAA (Service Assurance
Agent) [30]4 or IPPM one-way active measurement
protocol (OWAMP) [24] can be used with little
modification.

5.2. Validation

To validate the proposed technique, we emulate
active test packets in the following manner.5 Given
an estimation interval (I) and accuracy parameters
({e,g}), whenever the random timer (t) expires, we
choose the next arriving packet from the data sets,
and use its delay as an active test packet measure-
ment. The accuracy parameters are set to be
e = 10 ls6 and g = 0.05 to estimate .99th quantile
of delay. We have used 0.001 and 0.0005 for f(qp).
The computed numbers of samples to ensure the
estimation accuracy are only 423 and 1526,
respectively.
4 SAA (Service Assurance Agent) is an active probing facility
implemented in Cisco routers to enable network performance
measurement.

5 We could not perform probing simultaneously to passive trace
collection since all long-haul links on the Sprint backbone have
been upgraded to OC-192 after the trace collection.

6 This small error bound is chosen to show the feasibility of the
proposed sampling.
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The estimated .99th quantiles over 10 min inter-
vals using 423 packets are compared with the actual
.99th quantiles in Fig. 9. Using the same number of
423 test packets, the estimated quantiles are com-
pared with the actual ones over 30 min interval in
Fig. 10. Using such small numbers of packets, the
estimated quantiles are very close to the actual ones,
for all the data sets and estimation intervals.
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To assess the statistical accuracy, we conduct
experiments over an estimation interval (30 min)
as many as 500 times. For 0.99th quantile (q.99),
we desire the error to be less than e with probability
of 1 � g. We compare the estimated quantile from
each experiment with the actual quantile from the
total passive measurements. Fig. 11a displays the
estimation error in each experiment. Most errors
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Table 2
Bounded variance of estimates ({e,g} = {10 ls,0.05}, p = 0.99)

1/zp Data Set 1 2 3

25.95 Varðq̂pÞ 11.97 25.72 25.55
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are less then 10 ls which is the error bound e. To
validate the statistical guarantee of accuracy, in
Fig. 11b, we plot the cumulative empirical probabil-
ity of errors in quantile estimation. The y axis is the
experimental cumulative probability that the esti-
mate error is less than x. It illustrates that indeed
95% of the experiments give estimation error of less
than 10 ls, which conforms to the pre-specified
accuracy parameters.

Another key metric for the performance of a
sampling technique is the variance of an estimator.
Small variance in estimation is a desired feature
for any sampling method, as it tells the estimate is
more reliable. In the previous section, we have
shown that the proposed scheme enables us to
bound the variance of the estimates in terms of

the accuracy parameters, i.e., 1=zp ¼ e
U�1ð1�g=2Þ

� �2

.

Table 2 shows the variance of the estimates from
the proposed scheme. The variances are indeed
bounded by the value given in Eq. (9) given in Sec-
tion 4.
6. Active vs. passive sampling: overhead comparison

In this section, we compare a network-wide over-
head of our active measurement method to a passive
sampling technique.

For the comparison, we first describe a passive
sampling process for delay measurement in a net-
work (see Fig. 12 for reference). We sketch here a
hash based scheme proposed in [6]. For delay
measurement, all regular packets are hashed and
Fig. 12. Active and passive delay measurements.
passively sampled based on their hash values and
time-stamped at the measurement points. To cap-
ture the same sets of packets on different measure-
ment points, the same hash function is used to
sample packets at all measurement points. Then,
the collected packets are exported to a central server
where the same pair of packets are identified and the
delay is computed. In order to reduce the bandwidth
consumed when exporting those samples, only a
hash of the packet ID is exported, rather than the
whole packet header. The downside of this tech-
nique is to increase the risk of packet mismatch at
a central sever. The central server then matches all
packets and computes the delay from the difference
of their timestamps. The method can be optimized
using routing information in order to ease the task
of finding pairs of measurement points where packet
might have traversed from one to the other.

Note that even with passive measurement, mea-
sured packets should be transferred to a central ser-
ver to combine time information from measurement
points, since for one delay value, two measurement
points are involved, i.e., the source and the sink.
Therefore, either active or passive, delay measure-
ment consumes bandwidth by nature.

In order to compare the overhead, we consider
the case where the number of delay samples are
equal so as to achieve the same accuracy of estima-
tion from both methods. Assuming the number of
samples is small as shown in Section 4, the perfor-
mance of regular traffic would not be affected
by measurements for both active and passive
measurement.

We ignore the control protocol overhead for
signaling among routers (active probing) or between
routers and a central server (passive sampling and
active probing7), which we expect to be similar in
both methods. In addition, both active and passive
monitoring systems can be either implemented as
an integral part of routers in an embedded manner
[30] or as a stand-alone out-of-router measurement
system.

First, let us analyze the bandwidth used by mea-
surement data. Consider the number of bytes used
to report one packet delay. In a passive method,
we transfer only the packet identifier (hash value)
rather than the entire packet header and payload.
Each packet hash value should be transferred with
7 This additional signaling is required in active probing to
report the estimated quantiles to a central server.



8 An instance of a PoP level traffic matrix showed that the
fanout varies from 0.001% to 40% in the network of our study.
The fanout factor would dramatically decrease in router or link
level [21].
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its timestamp. Then, in order to compute one delay
from one point to the other, two packets are
required with a passive sampling. Suppose n* pack-
ets are required for a given accuracy. For a given
pair of measurement points, the number of packets
that have to be sent is n* with the active method.
For the passive method, note that only a portion

of the packets retrieved at a source router are sent
to the sink router of the measurement interest. Sim-
ilarly, only a portion, so called traffic fanout factor

P, (where 0 6 P 6 1) of the packets at the sink rou-
ter is originated from the source router. Therefore,
in order to produce the needed number of delay
samples, the number of measured packets has to
be scaled accordingly. For example, let PA,B be the
portion of total traffic from an measurement point
A to B. Then the number of samples at link A

should be scaled up by PA,B to produce the required
number of matched packets on average. Similarly,
the number of samples at link B should be scaled
up by a factor of PB,A. Thus, the number of samples
for a pair of delay measurements with the passive
sampling ðnop

passÞ is

nop
pass ¼

n�

P A;B
þ n�

P B;A
: ð10Þ

Now, we consider a network-wide number of sam-
ples in an ISP. With the passive measurement, the
number of samples increases linearly with the number
of measurement points, say Nmp, i.e., 2

P � n� � N mp.
Meanwhile, traffic fanout factor becomes inversely
proportional to the number of measurement points.
Let us denote the network-wide number of samples
with a passive sampling as nnw

pass. Then, for a network
with Nmp number of measurement points and the
average fanout factor Pavg, nnw

pass is computed as below

nnw
pass ¼

X
ði;jÞ2fpairsg

n�

P i;j
þ n�

P j;i

� �
; ð11Þ

� n�

P avg
� N mp � n�N 2

mp; ð12Þ

where we approximated the average fanout factor
with the inverse of total number of measurement
points in the network (i.e., Pavg � 1/Nmp).

In the active measurement, the number of sam-
ples grows linearly with the number of pair of mea-
surement points, Npairs, or quadratically with the
number of measurement points. We denote the net-
work-wide number of samples with the active mea-
surement as nnw

actv, and it is computed as below
nnw
actv ¼ n� � N pairs ¼ n� � Nmp � ðN mp � 1Þ; ð13Þ
� n� � N 2

mp: ð14Þ
To assess the amount of actual bandwidth con-
sumed, let us assume 64 bytes are used for both an
active test packet and a passive packet sample.
For a passive packet sample, suppose 4 bytes for a
packet hash value, 8 bytes for a timestamp, 4 bytes
for a source router address, 4 bytes for a link iden-
tifier, and 20 bytes for a export protocol header
(in order for a central server to recognize the mea-
surement data) are used. Including 20 and 8 bytes
for IP and UDP headers of the exported packet, it
leads to a total of 64 bytes for one packet data.
For a measurement interval, we also assume 1000
samples are used. Fig. 13a illustrates the bandwidth
usage for the two schemes with varying number of
measurement points. The advantage of the active
method is prominent when a small number of mea-
surement points are measured. If most of the mea-
surement points are measured in a network, the
number of samples from both methods becomes
similar. In practice, traffic fanout exhibits a large
disparity among measurement points.8 In addition,
the fanout factor is not known in advance and var-
ies over time, making it hard to ensure the number
of samples in passive sampling. Furthermore, there
may be very little or no match between the packets
sampled at two measurement points. In that case, it
may not be possible for a passive measurement to
produce enough number of samples to obtain a
delay estimate with any reasonable accuracy. On
the other hand, the active method injects only a
fixed, required number of samples, regardless of
the traffic load between measurement points, ensur-
ing the accuracy of the measurement. Therefore,
when a portion of measurement pairs are measured,
the passive sampling consumes more bandwidth,
thus rendering itself more intrusive than the active
measurement. In addition, passive measurement
requires all packets to be hashed, potentially affect-
ing the performance of the forwarding path of the
measurement point.

Now we consider memory requirement either at a
router or at a central station. In a passive measure-
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ment, sets of transferred packets have to be kept at a
central station for a long enough duration of packet
delay within a network. Then a set of stored packets
from a measurement point will be matched with
ones from another measurement point for delay
computation. On the other hand, in the active mea-
surement, each measurement point computes the
delay of a test packet on arrival of the test packet
at destination. Thus, only the data relevant to delay
statistics (e.g., histogram) needs to be kept at a sink
router. Fig. 13b compares memory requirement of
the two schemes. A fixed amount of memory is
needed at a measurement point in the active scheme.
In a passive measurement, however memory
requirement at a central station larger than active
scheme and grows with the network size.

Taking bandwidth consumption and memory
requirement into consideration, for the purpose of
network wide delay monitoring, we find that an
active probing is more practical and less intrusive
over a passive sampling.

7. Related work

IPPM (IP Performance Metrics) [15] has defined
a set of metrics [10] for measuring the quality, per-
formance, and reliability of Internet paths, and
developed standard frameworks [35] for active prob-
ing. IPPM does not provide a complete delay mea-
surement methodology as we do. Projects such as
RIPE (Reseaux IP European) TTM (Test Traffic
Measurement) [29] and Surveyor [19] implement
IPPM metrics, and provide GPS enabled measure-
ment infrastructures to be deployed on networks
to monitor. In these frameworks, test packet fre-
quency is left to a user’s decision.
ping (and its variations), traceroute, path-

char [16], clink [5] are active probing tools that
have not been originally designed to give accurate
measures of network delay. Most of these perfor-
mance measurement tools use path-oriented active
probing techniques. The number of test packets
and the measurement durations are typically left
to user’s choice. Then, average, minimum, and max-
imum delays are computed for the given number of
test packets.

Many performance monitoring projects such as
AMP (Active Measurement Project) [7], CAIDA’s
skitter [8], and PingER [23] employ such tools.
These projects use either bursty for a short time or
Poisson modulated probing. Probing frequency var-
ies from two packets per second to one packet per
hour between two measurement points. SAA [30]
is an active probing tool in Cisco routers that can
measure delay statistics of a path between two rou-
ters. Since the probing scheme in SAA is periodic,
the statistical validity is neither known nor
controllable.

Note that none of the tools or projects above has
proposed an explicit delay metric and validated a
test packet generation technique on real data.

A number of papers have addressed delay perfor-
mance measurement. Some of them are worth men-
tioning, but they are not directly related to our
work. End-to-end Internet delay characteristics
have been studied in [2,27] using active test packets
and/or TCP connection traces. A high precision
timing technique without GPS was developed for
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one way delay measurement in [26]. The problem of
monitoring link delays and faults that ensure com-
plete coverage of the network are studied in [1]. In
[32], authors compute delays for path segments
from a set of end-to-end delay measurements by
solving a system of linear equations.

Hash-based passive sampling in [6] proposes to
use the same hashing function at all links in a net-
work to sample the same set of packets at different
links in order to infer statistics on the spatial rela-
tions of the network traffic. In [37], the author con-
siders the problem of SLA validation with passive
measurement. Given an average SLA delay value,
they classify packets into two types, i.e., SLA com-
pliant or not. It is assumed that passively measured
data from two endpoints can be transferred at low
load period or over a separate network.

Our work differs from all the above, in that we
focus on the representativeness of point-to-point

measurements, which give a concise and accurate
summary of network performance for operational
utilization. In particular, we investigate practical
issues such as the impact of the measurement inter-
val, the appropriate metric, boundable accuracy in
delay estimation and measurement overheads. Fur-
thermore, to the best of our knowledge, our work is
the first attempt to compare and validate the perfor-
mance of test packets with that of actual traffic in an
operational network.
8. Conclusions

We proposed a practical delay measurement
methodology designed to be implemented in opera-
tional backbone networks. It consists of measuring
high quantiles (between 0.95 and 0.99) of delay over
10–30 min time interval using pseudo random active
probing. We justify each step and parameters of the
technique and validate it on real delay measurement
collected on a tier-1 backbone network. The accu-
racy of the delay measured can be controlled, and
is guaranteed with a given error bound. Our method
is scalable in that the number of active test packets
is small, and the deployment and monitoring over-
head is minimal for a backbone network measure-
ment. We also evaluated the overhead of our
active probing scheme and compared it to a passive
sampling method showing active measurement
becomes more practical for delay monitoring.

To the best of our knowledge, this is the first
effort to propose a complete methodology to mea-
sure delay in operational networks, and validate
the performance of the proposed monitoring
scheme on operational data. As a part of next step,
we are enhancing the methodology to monitor other
performance parameters of interest to ISPs (i.e., jit-
ter, loss, and availability).
Appendix A
Proof (of Eq. (7)). To build a confidence interval
for q̂p around qp, we first derive the relationship
between q̂p and qp, in the context of random
sampling. For ease of illustration, we assume that
X is a continuous random variable with probability
density function fX(x). As a further simplification of
analysis, consider bF ðxÞ to be continuous as well.
Then, note that

bF ðq̂pÞ � bF ðqpÞ ¼ p � bF ðqpÞ: ðA:1Þ

Consider a random variable Zi’s defined as Zi ¼ p�
IX i6qp

, (1 6 i 6 n) Zis are i.i.d. random variables
with zero mean and a variance of p(1 � p).
Therefore,

p � bF ðqpÞ ¼
1

n

Xn

i¼1

ðp � IX i6qp
Þ ¼ 1

n

Xn

i¼1

ðp � ZiÞ

� N 0;
pð1� pÞ

n

� �
: ðA:2Þ

On the other hand, using a heuristic difference,

bF ðq̂pÞ � bF ðqpÞ � bF 0ðqpÞðq̂p � qpÞ � F 0ðqpÞðq̂p � qpÞ
¼ fxðqpÞðq̂p � qpÞ: ðA:3Þ

Combining (A.1)–(A.3), we obtain

q̂p � N qp;
r2

n

� �
where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
fxðqpÞ

: �

ðA:4Þ
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